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ABSTRACT

Semiconductor-based integrated circuits have become the mainstream for very-large-scale

integration systems such as high-speed digital circuits, radio-frequency integrated circuits,

and even monolithic microwave integrated circuits. The shrinking feature size and increasing

frequency promote high integration density and interconnection complexity that demand high-

accuracy modeling techniques. The current design paradigm has shifted from the transistor-

driven design to the interconnect-driven design. Thus the accurate electromagnetic full-wave

modeling of on-chip interconnect becomes critical for the computer-aided design tools to ana-

lyze the overall system performance.

In this research, the full-wave spectral domain approach is implemented to investigate the

electromagnetic properties of multilayered transmission lines with semiconductor substrates.

In particular, finite thin metallization components, such as the thin metal ground layer and

signal strips, are focused on. The thin metal ground layer is generally designed as a shield

or a ground plane to depress the coupling and noise from neighboring components. But its

fabricated thickness is often a small fraction of one micron, which may allow electromagnetic

fields to penetrate through at some low frequencies. Such electromagnetic leakage phenomena

play a significant role in the overall dispersive performance of transmission lines, and their

consideration is inevitable.

For the spectral domain approach, the metallization layer can be rigorously modeled as a

dielectric with a complex permittivity. However, due to the large conductivity of metal, the

conventional transfer matrix method has potential overflow problems in obtaining the multilay-

ered Green’s function. In our research, a new formulation of the cascaded matrix is developed

to overcome such numerical difficulties. Based on this formulation, the complete character-
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istics of multilayered transmission lines with thin metallization components are studied by

parameters like the propagation constant, attenuation per unit length, field distribution, char-

acteristic impedance, transient response, and extracted resistance, inductance, capacitance,

and conductance of equivalent circuits. The parallel-plate waveguide model is applied to study

a metal-insulator-metal-semiconductor structure. The first- and second-order low-frequency

approximations for the fundamental propagation mode are derived with corresponding equiv-

alent circuit models. In addition, other approximate models for the thin metal ground are

compared numerically to assess their validity.

Two transmission lines with the metal-insulator-metal-semiconductor and the metal-insulator-

metal-insulator structures are analyzed. Numerical results indicate that the thin metallization

components have significant impacts on the propagation characteristics. The thin metal layer

can enhance or even excite the slow-wave mode. Thus, it is necessary to take these effects into

account to achieve accurate and reliable analysis of integrated circuit interconnects from dc to

millimeter-wave frequencies.
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CHAPTER 1. INTRODUCTION

During the last three decades, the semiconductor-based integrated circuits (ICs), such as

very-large-scale integration (VLSI) circuits, radio-frequency integrated circuits (RFICs), mono-

lithic microwave and millimeter-wave integrated circuits, and high-speed digital circuits, have

progressed rapidly. The operating frequency keeps increasing. And the feature size, defined

as the smallest width that can be reliably manufactured on semiconductor wafers, goes into

the deep submicron region. For example, current leading-edge technology is the 45nm process

(Intel, 2007). By 2020, according to the report of International Technology Roadmap for Semi-

conductors (ITRS) [1], the feature size will shrink to about 14nm. In addition, many complex

interconnect technologies, such as the multichip module, the hierarchical wiring topology, and

multilevel and multilayered interconnect networks, have been introduced to promote high in-

tegration density. Chips stacking up to ten layers vertically through via connections have been

widely adopted. The 3-dimensional packaging technology plus vertical integration has also

been available.

However, such complicated interconnect structures also bring new challenges. Due to the

reduction of device size and increase of overall chip size, the signal delays on interconnect

networks become critical in determining the overall circuit performance. Currently the VLSI

design paradigm is shifting from the conventional transistor-driven to the interconnect-driven

design to satisfy the total technical requirements. Moreover, the high integration density

makes circuits vulnerable to the harsh electromagnetic interference (EMI). The requirement of

signal integrity demands that the computer-aided design (CAD) tools should accurately and

efficiently predict the electrical properties of transmission systems. To accomplish this goal,

the accurate modeling of electromagnetic (EM) properties of interconnects is the key [2].



www.manaraa.com

2

The goal of the this research is the full-wave EM modeling and simulation for multilayered

planar interconnects with imperfect finite metallization. The frequency range is from the sub-

kilohertz to hundreds of gigahertz or even terahertz regimes. Specifically, in our research the

effects of the thin-film metal ground and finite thin signal strips are focused on. The impacts

on the overall transmission-line properties, such as propagation speed, loss, and characteristic

impedance, are studied.

1.1 Research Motivation

The planar passive transmission lines are extensively implemented in ICs. Since high-speed

digital chips and VLSI circuits can operate at a frequency of up to 100 GHz, the interference

between neighboring passive components rises remarkably with the scaling down of device

size [3]. In particular, the consideration of crosstalk, couplings, power supply noises, ground

bouncing, ringing, and electromagnetic radiation is inevitable across the whole circuits and

chip-to-chip links.

To depress the interference, one widely used solution is to add properly designed neighboring

metallization or highly conductive layers as ground planes. The inner metallic layer is usually

fabricated with a thickness of only a small fraction of one micron. This uniform metal plane

presents a current return path with very small impedance for all interconnects above and

below. Fig. 1.1 illustrates examples of the metal-insulator-semiconductor (MIS), the thin-film

microstrip line (TFMSL), the inverted embedded microstrip (IEM), and the patterned ground

shield, in which thin metallization components are embedded.

Two major obstacles have been encountered for analyzing such structures. One is the broad

frequency range. Signals and their harmonics in interconnects can spread in a broad frequency

spectrum from dc up to even millimeter waves. The other is the impact of imperfect conductors

with finite conductivities. For a good conductor, the EM waves cannot be completely shielded

outside but rather decay exponentially inside the conductor. The 1/e attenuation distance is

defined as the skin depth δ. For example, the skin depth of copper is around 2µm at 1GHz,

which is already larger than the metallization profiles fabricated in current VLSI circuits.
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(a)  (b) 

(d) (f) (e) 

(c) 

Figure 1.1: Multilayered transmission lines with thin metallization components: (a) metal-
insulator-semiconductor microstrip line, (b) thin-film microstrip line, (c) suspended membrane
microshielded line, (d) inverted embedded microstrip line, (e) MIS with patterned ground
shield, (f) coplanar waveguide (region filled with diagonal lines: thin metallization, grey region:
semiconductor, white region: dielectric or insulator).

Therefore, the EM fields can penetrate the conductors and reach substrates underneath at

low frequencies, which consequentially influence the overall electric properties of interconnects.

Moreover, signal strips, which account for the major part of propagation loss and attenuation,

exhibit the skin effect and current proximity effect at high frequencies. The skin effect reveals

that a majority of current is confined within small regions near the surfaces and corners. The

current proximity effect is that current distribution tends to congregate due to neighboring

conductors. Such EM penetration, skin effects, and current proximity effects are all frequency

dependent and generate exponentially varying currents inside conductors, which are critical

for the overall interconnect performance. However, these effects are so troublesome that they

are usually neglected in today’s CAD tools.

In addition, high accuracy demands are posed on CAD tools to model lossy transmission

lines with via connections, which have become a generic trend in IC designs. Two aspects

must be considered: the electromagnetic properties of passive components and the presence of

lossy semiconductor layers. However, most present circuit-model-based CAD solvers are based

on the static or quasi-static approximation. And the propagation waves are assumed to be

the quasi-transverse electromagnetic (quasi-TEM) mode. These assumptions may eventually

be violated due to the steady technology progress toward higher frequencies and EM wave

phenomena of interconnects. In addition, most EM field-based solvers model the metallization

components as the perfect electric conductor (PEC) or the impedance boundary condition
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(IBC). These two boundary conditions (BCs) are impenetrable and improper in describing the

EM penetrating phenomena as discussed before. So far no specific attention in the literature

and measurement has been paid to the thin metal ground in multilayered structures.

To predict accurately the electrical performance of interconnects over a broad frequency

range, the full-wave EM methodology is necessary. This dissertation investigates the intercon-

nect structures with configurations of thin metal conductors. In our research, the imperfect

conductor effects are systematically investigated by specific parameters such as the propagation

constant (effective permittivity and slow wave factor); attenuation (loss) per unit length; char-

acteristic impedance; equivalent resistance, inductance, capacitance, and conductance (RLCG)

per unit length, and others. The resulting design rules should give designers the capabilities

to simulate and explore interconnect easily and accurately.

1.2 Relevant Literature Review

Although the original microstrip line was introduced as early as the 1950s [4], the rele-

vant planar transmission lines have played an important role in the advanced RF, microwave,

and millimeter-wave technologies. Within these technologies, the analysis methodology is of

fundamental importance.

Microstrip lines are planar transmission systems through which EM waves propagate. For

multilayered structures, specifically, the problems belong to the guided waves theory and EM

propagation in stratified media. These topics have been researched systematically for decades

[5]-[7]. Early studies of microstrip lines were mostly based on empirical formulas from experi-

mental data [8]. Apart from those, analyzing techniques are categorized into two main groups:

static or quasi-static and dynamic or full-wave approaches [9].

The early theoretical work was primarily based on equivalent physical circuit models. The

researchers used the quasi-TEM models that are valid only at dc and low frequencies. This

model presumes that the propagation waves resemble the pure TEM modes by ignoring the

longitudinal field components. Two techniques, the static and the quasi-static, have been

developed for the quasi-TEM analysis. For the static analysis, electric and magnetic fields
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are independent to each other. By solving the Laplace and Poisson equations, corresponding

circuit parameters like the resistance, capacitance, and inductance are calculated from the

static charges and current distributions. For the quasi-static analysis, electric and magnetic

fields are coupled by the conductive current, whereas the displacement currents are neglected.

Many approaches have been proposed primarily based on the quasi-TEM assumption.

Wheeler [10], [11] first studied the strip lines by the conformal mapping to evaluate the static

capacitance. The variational method was applied by Yamashita and Mittra [12] and later by

Medina and Horno [13]. Wei et al. [14] solved for the capacitance and inductance of multi-

layered multiconductor transmission lines by using free-space Green’s functions with total and

polarization charges on interfaces. The quasi-TEM spectral domain analysis was introduced

by Itoh [15] to solve the Poisson equation. Green [16] applied the finite difference (FD) method

to solve the Laplace’s equation for transmission lines.

Generally, the quasi-TEM analysis is computationally efficient but restricted to yield ac-

curate results only at the low-frequency region. There is no clear-cut upper boundary of

frequency to guarantee its validity. Moreover, with frequency increasing and structure being

more complicated, the dispersive characteristics of microstrip lines become more dominant to

invalidate the quasi-TEM assumption. Thus, all these characteristics promote the full-wave

analysis techniques with regard to accuracy.

The full-wave analysis methods can analyze strictly the hybrid modes at any frequency

by solving Maxwell’s equations with specific BCs. Mathematically rigorous full-wave methods

include the integral-equation-based method, such as the full-wave spectral domain approach

(SDA), and the differential-equation-based method, such as the finite element method (FEM).

The integral-equation-based methods require accurate Green’s functions for the multilayered

structures [17], [18]. In details, the Green’s functions are derived either in the spatial domain

or in the spectral domain. These two domains can be transformed into each other by the for-

ward and inverse Fourier transformations. For example, the mixed-potential-integral-equation

method obtains spatial Green’s functions through so-called Sommerfeld integrals from the

spectral domain to the spatial domain [19].
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The SDA is an efficient method widely applied to the planar transmission lines, filters, and

antennas. A brief review of relevant development for the SDA can be found in [20]-[26]. By the

Fourier transformation, the differential equations are transformed from the spatial domain into

the spectral domain so as to simplify the problem. The method of moments (MoM) is used

to solve the integral equations, from which the characteristic equation is obtained by using

the Galerkin’s technique and Parseval’s theorem. Then the characteristic equation yields the

eigenvalues as the propagation constants of different modes, with which other transmission

line properties like characteristic impedance and field distribution can be computed. Itoh

and Menzel [27] pointed out the connection between the Green’s functions in the spatial and

spectral domains. Livernois and Katehi [28] applied the principle of scattering superposition

to find the spatial domain Green’s functions and to analyze multilayered structures. In [29],

closed-form spatial Green’s functions for thick microstrip substrate were derived using the

complex image technique.

The differential-equation-based methods directly discretize the entire simulation domain to

result in a huge linear system of equations. Although being flexible to handle inhomogeneous

problems, they prefer truncated problem domains rather than open ones. Examples of these

approaches are the FD [30], [31], the finite difference in time domain (FDTD), the FEM [32]-

[35], the method of lines (MoL) [36], and the transmission line matrix (TLM) method [37].

Zhao et al. [38] proposed a full-wave compact 2-dimensional finite difference frequency-domain

method for general guided transmission lines. Shibata and Sano [39] used the FDTD method to

study the MIS structure with the metallization effect. Yook et al. [40] considered and analyzed

the 3-dimensional interconnect with through-substrate vertical vias using the FDTD and FEM,

respectively. Rather than the Fourier transform in the SDA, the MoL uses the finite difference

along the lateral direction and solves for analytical solutions along the vertical direction. The

TLM requires the 3-dimensional grid partitioning. Neighboring grid points are connected by

distributed transmission lines that model the wave phenomena inside the structure. The local

transmission line parameters are obtained by the media and boundary conditions.

Another full-wave approach is the mode-matching method that is useful when the whole
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problem region can be partitioned and each sub-region has well-defined solutions that satisfy

the BCs. The orthogonality of solutions is applied to generate a linear system of equations

[41], [42]. The details of other numerical methods can be found in [43].

Besides the study of general multilayered transmission lines, the characteristics of microstrip-

type and coplanar waveguide-type interconnects over lossy semiconductor substrate have also

been studied extensively. Many accurate electromagnetic models have been built to predict

these frequency-dependent properties. Early research work on guided-wave structures formed

by metallic strips on semiconductor wafers can be traced back to the 1960s. Guckel et al. [44]

suggested that the very low phase-velocity wave could exist within MIS structures. In 1971,

Hasegawa et al. [45] experimentally verified Guckel’s prediction and further proposed three

fundamental modes. In both papers, the transmission line model with lumped elements were

derived. Jäger [46] investigated the slow-wave propagation and the effect of metallic losses.

Kennis and Faucon [47] used the SDA to verify the numerical results with the measurement.

A similar full-wave approach was applied by Cano et al. [48] to the microstrip lines with

anisotropic substrates. The close-form expressions for the extracted RLCG parameters for

MIS lines were proposed by Williams [49]. A fast EM integral equation method was imple-

mented by Morsey et al. [50] for the frequency domain modeling of lossy interconnect. Plaza

et al. [51] presented a quasi-transverse magnetic (TM) MoL to the lossy transmission lines.

All these efforts took into account the conductor loss of transmission lines and hybrid nature

of the fundamental modes in layered structures.

One shortcoming of the canonical SDA is its inability to model thick conductors like the

finite metallization of signal strips. To analyze the transmission line loss, several improved

and modified SDA models have been proposed. For example, Das and Pozar [52], [53] used

the SDA to develop the general Green’s functions and analyze the conductor, dielectric, and

radiation loss for multilayered transmission lines.
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1.3 Organization of the Dissertation

The rest of the dissertation is organized as follows. Chapter 2 investigates the parallel-

plate waveguide model to study the metal-insulator-metal-semiconductor (MIMS) structure.

The exact eigenvalue equation is derived to solve for the fundamental TM modes. Furthermore,

the integral-based formulations of field distribution and characteristic impedance are presented.

Based on the eigenvalue equation, the first- and second-order low-frequency approximations

are derived for the propagation modes and equivalent circuit models.

Chapter 3 briefly reviews the electromagnetic background of the full-wave SDA. The Green’s

functions for 2-dimensional multilayered transmission lines are derived using the transfer matrix

method [22] and the immitance approach [23]. A new formulation of transfer matrices is

developed to avoid the potential overflow in [22]. Resulting integral equations are solved by

the Galerkin’s method. The propagation constants are found by the complex-root-finding

algorithm as the eigenvalues of transmission line systems.

Chapter 4 discusses separately the modeling of thin metal ground layers and signal strips.

Different approximation models in the literature are listed and compared through the numerical

simulation. The modified SDA is used to study the influence of imperfect conductors with finite

thickness.

In Chapter 5, a complete picture of transmission line properties is presented. This chapter

embodies in detail the formulations and expressions that are useful for analyzing the loss,

characteristic impedance, field distribution, and transient response of transmission lines. Some

computational topics such as complex-root finding and numerical integration are discussed.

The overall analysis of transmission lines is implemented with examples of MIMS and metal-

insulator-metal-insulator (MIMI) structures in Chapter 6. The full-wave numerical simulations

are utilized to study the slow-wave effect and the influence of finite metallization thickness and

conductivity. Conclusions and future work are discussed in Chapter 7.

There are three appendices in the dissertation. Appendix A is devoted to the formulation

of the parallel-plate waveguide model. Appendix B contains the details of the transfer matrices

under different BCs. Appendix C lists all the abbreviations used in this dissertation.
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CHAPTER 2. THE PARALLEL-PLATE WAVEGUIDE MODEL FOR

LOSSY TRANSMISSION LINES

2.1 Introduction

Among the diverse models for multilayered microstrip lines, the parallel-plate waveguide

model is the simplest one to study the wave propagation phenomenon in inhomogeneous me-

dias. Its basic assumption is that, when the width-to-height (w/h) ratio is large enough,

microstrip lines can be approximated by the parallel-plate waveguides. All planar structures,

even including ground planes and signal strips, are modeled as uniform dielectric sheets. The

field distribution becomes uniform and no radiation exists along the lateral directions, which

also implies that the fringing fields are ignored. To ensure propagation modes along the longi-

tudinal direction, the transverse resonance condition must be satisfied. This condition greatly

simplifies the complicated 2-dimensional eigenvalue problems into 1-dimensional ones. Thus

it is easy to gain a good physical insight into the propagation mechanism. Different propaga-

tion modes were found using this model. And equivalent transmission-line circuits were built

accordingly.

Unlike the homogeneous parallel-plate waveguide that supports pure TEM waves, the mul-

tilayered one only supports hybrid transverse electric (TE) and transverse magnetic (TM)

waves because of the coupling between electric and magnetic fields on the dielectric inter-

faces. The dominant propagation mode is the TM0 or E mode. Only at low frequencies, when

the longitudinal field components are negligible, can the quasi-TEM mode approximation be

applied.

The original work of the parallel-plate waveguide can be traced back to J. C. Maxwell who

studied the interfacial and space-charge polarization for the Maxwell-Wagner two-layer con-
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denser [54]. The condenser consists of two parallel sheets of dielectric materials and is bounded

by perfect conductor plates. In the proposed equivalent circuit, each layer was modeled by a

shunt capacitor and a shunt resister, and all layers were in series relationship.

Guckel et al. [44], Hasegawa et al. [45], and Jäger [46] did the initial work to study the MIS

transmission lines using the parallel-plate waveguide models. Guckel et al. found a critical con-

ductivity σmin where the line attenuation is a minimum. When the semiconductor conductivity

σs > σmin, the structure is controlled by the series loss from the semiconductor substrate, and

by the shunt loss vice versa. Three frequency intervals were found: the diffusion-like propaga-

tion at low frequencies, the very-low-phase-velocity region, and the skin-effect and dielectric

loss behavior in higher frequencies. The low-frequency and second-order approximations of the

propagation constant were derived along with different equivalent circuit models. Hasegawa

et al. extended the concept of the operation regions and defined three fundamental “modes”:

the dielectric quasi-TEM mode, the skin-effect mode, and the slow-wave mode. Between them

are the transition regions. Equivalent circuits for different modes were proposed accordingly.

Jäger studied the slow-wave propagation of Schottky-contact microstrip lines. Unlike the PEC

boundary conditions used by previous researchers, the metallic strip conductor as well as the

ground plane were modeled as ohmic metallization layers, and the perfect magnetic conductor

(PMC) BCs were used to derive the formulas for impedance and propagation constant. In

the equivalent circuit, the resistance from longitudinal losses in substrate was modeled as in

parallel, instead of in series, with the resistance of metallic conductors. The influence of the

imperfect conductors was found to be dominant. More recently, based on the volume integral,

Williams [49] developed the close-form expressions for the RLCG parameters of equivalent cir-

cuits. All these investigations build the foundation of semiconductor-based lossy transmission

lines.

The chapter is organized as follows. In Section 2.2, a MIMS structure is studied using the

exact eigenvalue equations. Section 2.3 derives corresponding low-frequency approximations

and proposes the equivalent circuits. Numerical simulations are exhibited in Section 2.4, and

the limitations of the parallel-plate waveguide model are discussed in Section 2.5.
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2.2 The Metal-Insulator-Metal-Semiconductor Structure With a Thin

Metal Layer

To study the effect of the thin metallization layer, a MIMS structure is studied using the

parallel-plate waveguide model. Fig. 2.1 includes two model structures, where Fig. 2.1(a) shows

a three-layered parallel-plate waveguide model with PEC-PEC BCs and Fig. 2.1(b) shows a

four-layered model with PEC-PMC BCs.1 The four-layered structure is much closer to the open

microstrip case with thin metallization ground and signal strip. All parallel-plate structures

are infinite in the x and z directions. The gray layer stands for the silicon substrate; the white

layer stands for the silicon dioxide. A thin metallization layer is inserted in the middle. In the

figures, εri and µri stand for the relative permittivity and relative permeability of ith layer. li

and σi are the thickness and conductivity, respectively. In this case, the conductivity of silicon

dioxide σ3 is assumed to be zero. As the models in [49], the thin metal layer is regarded as a

dielectric with a complex relative permittivity defined as

ε̇ri = ε′ri − jε′′ri = εri − jσi/(ωε0) (2.1)

where σi is the metal conductivity and ω is the angular frequency.
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Figure 2.1: Two parallel-plate waveguide models for a MIMS structure: (a) three-layered model
with PEC-PEC BCs, (b) four-layered model with PEC-PMC BCs.

In the z direction, this guided-wave structure is assumed to have a longitudinal propagation

constant γz, and the propagation wave owns e+jωte−jγzz as the factor.2 Instantly, we get the
1The PMC is an approximation for the open space BC.
2Compared with γ defined in [44], [46], the relation jγz = γ holds.
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relationship as follows

γ2
i − γ2

z = −k2
0 ε̇riµri, i = 1, . . . , N (2.2)

where N is the number of layers; k2
0 = ω2ε0µ0 is the free-space wave number; i is the layer

index. Unlike otherwise specified, γi here is actually the simple showing of γyi, the transverse

propagation constant along the y direction as e−γiy. In such structure, the fundamental prop-

agation mode is the TM or the E mode. According to the transverse resonance condition, the

up and down impedances are matched on the interface as [46], [55]

CN
1∑

i=1

Ziti +
CN

3∑

(i,j,k)
i<j<k

ZiZk

Zj
titjtk +

CN
5∑

(i,j,k,l,m)
i<j<k<l<m

ZiZkZm

ZjZl
titjtktltm + · · ·

+
CN

p∑

(i,j,k,...,np)
i<j<k<···<np

ZiZk · · ·Znp

ZjZl · · ·Znp−1

titjtk · · · tnp = 0 (2.3)

where p is the maximum odd number that does not exceed N . The last summation is denoted

over all the arrangement (i, j, k, · · · , np) in which p integers are chosen out of 1, 2, · · · , N and

arranged in the order of increasing magnitude. CN
p is the number of combinations of p objects

from N

CN
p ≡

(
N

p

)
≡ N !

p !(N − p)!
. (2.4)

ti is defined as follows

ti =





tanh (γili) (i = 2, · · · , N − 1)

tanh (γili) (i = 1, N, PEC)

coth (γili) (i = 1, N, PMC)

. (2.5)

Zi denotes the characteristic field impedance as

Zi =
γi

jωε0ε̇ri
(TM modes) (2.6)

Zi =
jωµ0µri

γi
(TE modes) . (2.7)

At certain frequency, the unknown propagation constant γz can be solved from the character-

istic equations (2.3).
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2.3 The Low-Frequency Approximations and Equivalent Circuit Models

Follow the same procedures in [44], [46], the low-frequency approximate solutions of γz

are deduced for the specific three-layered MIMS structure in Fig. 2.1(a). First, three separate

conditions are formulated from equation (2.2) as follows

γ2
i − γ2

z = −k2
0 ε̇riµri, i = 1, 2, 3. (2.8)

The impedances are matched on the interfaces to satisfy the transverse resonant condition to

yield the simplified condition as

3∑

i=1

γi

ε̇ri
tanh (γili) +

γ1γ3ε̇r2

γ2ε̇r1ε̇r3
tanh(γ1l1) tanh(γ2l2) tanh(γ3l3) = 0. (2.9)

By timing tanh (γili) / (γiεri) to both sides of (2.8) and summing them from i = 1 to 3, the

eigenvalue equation (2.9) may be expressed as

γ2
z =

k2
0

∑3
i=1

µri

γi
tanh (γili)− γ1γ3ε̇r2

γ2ε̇r1ε̇r3
tanh (γ1l1) tanh (γ2l2) tanh (γ3l3)∑3

i=1
1

γiε̇ri
tanh (γili)

(2.10)

The conductivity of the silicon dioxide layer is normally zero (σ3 = 0). At low frequencies,

the propagation mode is close to the quasi-TEM wave where γz tends to be negligible. In

this section, two cases will be discussed: the low-resistance silicon substrate and the high-

resistance silicon substrate. For the low-resistance silicon substrate, the propagation constants

in metallization layer and lossy silicon substrate have the following approximations

γ2
1 ≈ −ω2ε0µ0µr1

(
εr1 +

σ1

jωε0

)
≈ jωµ0µr1σ1

γ2
2 ≈ −ω2ε0µ0µr2

(
εr2 +

σ2

jωε0

)
≈ jωµ0µr2σ2 (2.11)

γ2
3 ≈ ω2ε0µ0εr3µr3

when

ω << min
{

2
µ0σ1l21

,
2

µ0σ2l22

}
and ω << min

{
σ1

εr0εr1
,

σ2

εr0εr2

}
. (2.12)
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Thus, for the low-frequency approximation, the following qualities hold

γ1 ∝ √
ω, ε̇r1 ≈ σ1

jωε0

γ2 ∝ √
ω, ε̇r2 ≈ σ2

jωε0
(2.13)

γ3 ∝ ω.

On the contrary, for the case of high-resistance silicon substrate, the silicon substrate tends

to be a lossless dielectric that has σ1 = 0. The corresponding low-frequency approximations

become

γ1 ∝ ω

γ2 ∝ √
ω, ε̇r2 ≈ σ2

jωε0
(2.14)

γ3 ∝ ω.

In addition, for the typical manufactured silicon wafers, l1 >> l2, l3 and l2 could be rather

small if the thin metallization layer is fabricated.

Based on the pervious assumptions, when the frequency ω approaches to zero, above propa-

gation constant γz has the first-order and second-order approximations, which will be discussed

below.

2.3.1 First-Order Approximation

At low frequencies, the small argument approximation as tanh(γili) ≈ γili (i = 1, 2, 3)

reduces (2.10), by ignoring the high-order terms, to

γ2
z ≈

k2
0 (µr1l1 + µr2l2 + µr3l3)− ε̇r2

ε̇r1ε̇r3
γ2
1γ2

3 l1l2l3
l1
ε̇r1

+ l2
ε̇r2

+ l3
ε̇r3

. (2.15)

Using the conditions of (2.11) and (2.12) for the low-resistance silicon case, above equation is

changed into

γ2
z ≈ ω2µ0ε0 (µr1l1 + µr2l2 + µr3l3)− jω3µ2

0ε0µr1µr3σ2l1l2l3
jωε0l1

σ1
+ jωε0l2

σ2
+ l3

εr3

≈ −jωµ0 (µr1l1 + µr2l2 + µr3l3)
l1
σ1

+ l2
σ2

+ l3
jωε0εr3

. (2.16)
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In this equation, only the ω2, ω, and constant terms are reserved, whereas the high-order terms

such as ω3 are ignored. The first-order approximation corresponds to an equivalent distributed

circuit with a series impedance per unit length and a shunt admittance per unite length. The

series impedance comes from three inductors in series, whereas the shunt admittance comes

from one capacitor and two conductors that are connected in series relationship as shown in

Fig. 2.2(a).

For the high-resistance silicon substrate case, the similar approximation becomes

γ2
z =

−jωµ0 (µr1l1 + µr2l2 + µr3l3)
l1

jωε0εr1
+ l2

σ2
+ l3

jωε0εr3

(2.17)

where the denominator shows the equivalent shunt elements in the distributed circuit are two

capacitors and one conductor in series. The equivalent circuit and corresponding component

parameters are shown in Fig. 2.2(b).

Specifically, if all three layers are lossless (σ1 = σ2 = σ3 = 0), the low-frequency approxi-

mation is

γ2
z =

k2
0 (µr1l1 + µr2l2 + µr3l3)

l1
εr1

+ l2
εr2

+ l3
εr3

(2.18)

which directly relates to an equivalent circuit with three series inductors for the series impedance

and three series capacitors for the shunt admittance.
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Figure 2.2: Equivalent circuits for the first-order approximation: (a) low-resistance substrate,
(b) high-resistance substrate.

2.3.2 Second-Order Approximation

By using the two-term approximation as tanh(γili) ≈ γili − 1
3 (γili)

3 (i = 1, 2, 3), the pre-

vious eigenvalue equation (2.10) can be approximated according to different conditions of the



www.manaraa.com

16

silicon substrate.

2.3.2.1 Low-resistance silicon substrate

In this case, the silicon substrate (i = 1) has a large conductivity (σ1 >> ωε0εr1) as (2.12)

so that γ1 ∝
√

ω, γ2 ∝
√

ω, and γ3 ∝ ω. The characteristic equation becomes

γ2
z ≈

[
k2

0 (µr1l1 + µr2l2 + µr3l3)− k2
0

(
µr1γ

2
1 l31 + µr2γ

2
2 l32 + µr3γ

2
3 l33

)
/3

− ε̇r2γ1γ3

ε̇r1ε̇r3γ2

(
γ1l1 − 1

3
γ3

1 l31

)(
γ2l2 − 1

3
γ3

2 l32

)(
γ3l3 − 1

3
γ3
3 l33

)]

/[
l1
ε̇r1

+
l2
ε̇r2

+
l3
ε̇r3

− 1
3

(
γ2
1 l31
ε̇r1

+
γ2

2 l32
ε̇r2

+
γ2

3 l33
ε̇r3

)]
. (2.19)

The first term in the numerator is proportional to ω2. The second term is truncated as

−k2
0

3
(
µr1γ

2
1 l31 + µr2γ

2
2 l32 + µr3γ

2
2 l33

) ≈ −k2
0

3
(
µr1γ

2
1 l31 + µr2γ

2
2 l32

)
(2.20)

where the ω4 term is neglected. In the same way, the third term in the numerator becomes

ε̇r2γ1γ3

ε̇r1ε̇r3γ2

(
γ1l1 − 1

3
γ3
1 l31

)(
γ2l2 − 1

3
γ3

2 l32

)(
γ3l3 − 1

3
γ3

3 l33

)
≈ ε̇r2

ε̇r1ε̇r3
γ2

1γ2
3 l1l2l3 (2.21)

where ε̇r2
ε̇r1ε̇r3

≈ σ2
σ1εr3

is a constant. So only the ω3 terms are kept in the numerator. Similarly,

all the terms are kept in the denominator because its highest order terms are only of ω2. By

neglecting the high-order terms of ω, the characteristic equation (2.19) has the second-order

approximate solution as

γ2
z ≈

[
k2

0(µr1l1 + µr2l2 + µr3l3)− k2
0

3
(
µr1γ

2
1 l31 + µr2γ

2
2 l32

)− ε̇r2

ε̇r1ε̇r3
γ2

1γ2
3 l1l2l3

]

/[
l1
ε̇r1

+
l2
ε̇r2

+
l3
ε̇r3

− 1
3

(
γ2
1 l31
ε̇r1

+
γ2

2 l32
ε̇r2

+
γ2

3 l33
ε̇r3

)]
. (2.22)

Substituted by (2.8), above characteristic equation can be rewritten as a quadric equation

of γ2
z

Aγ4
z −Bγ2

z + C = 0 (2.23)
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where

A =
1
3

(
l31
ε̇r1

+
l32
ε̇r2

+
l33
ε̇r3

)
− ε̇r2

ε̇r1ε̇r3
l1l2l3 (2.24)

B =
3∑

i=1

li
ε̇ri

+
k2

0

3
(2µr1l

3
1 + 2µr2l

3
2 + µr3l

3
3)−

ε̇r2

ε̇r1ε̇r3
k2

0 (ε̇r1µr1 + ε̇r3µr3) l1l2l3 (2.25)

C = k2
0 (µr1l1 + µr2l2 + µr3l3) +

k4
0

3
(
ε̇r1µ

2
r1l

3
1 + ε̇r2µ

2
r2l

3
2 − 3ε̇r2µr1µr3l1l2l3

)
. (2.26)

The basic solutions of the quadric characteristic equation (2.23) are found through

γ2
z =

B

2A

(
1±

√
1− 4AC

B2

)
. (2.27)

With the consideration of fabrication specifics, above coefficients yield

A ≈ − σ2

σ1εr2
l1l2l3

(
1− σ1l

2
3

3σ2l1l2
− jω

ε0εr3l
2
1

3σ2l2l3

)
(2.28)

B ≈ l3
εr3

+
ω2ε0µ0

3

(
2µr1l

3
1 −

3σ2

σ1
µr3l1l2l3

)
+ jω

(
ε0l1
σ1

+
ε0l2
σ2

+
µ0µr1σ2l1l2l3

εr3

)
(2.29)

C ≈ ω2ε0µ0

3∑

i=1

µrili − j
ω3ε0µ

2
0

3
(
σ1µ

2
r1l

3
1 + σ2µ

2
r2l

3
2 − 3σ2µr1µr3l1l2l3

)
(2.30)

if

l1 >> l3 >> l2

σ2 >> σ1 (2.31)

where l1 is in the order of hundreds of microns; l3 is about several microns. For the very thin

metallization, l2 is less than one micron. The silicon substrate has a conductivity σ1 in the

order of 101 S/m, while the conductivity σ2 of metallization is in the order of 107 S/m. Thus,

above conditions (2.31) hold.

From (2.28)-(2.30), it is apparent that B2 >> 4AC when ω approaches to zero. Thus, with

this low-frequency assumption, we can choose the minimal solution as the desired propagation

constant γz

γ2
z ≈ B

2A

[
1−

(
1− 2AC

B2

)]
=

C

B
. (2.32)
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Then the low-frequency approximate solution may be written as

γ2
z

k2
0

≈ (µr1l1 + µr2l2 + µr3l3)− j ωµ0

3

(
σ1µ

2
r1l

3
1 + σ2µ

2
r2l

3
2 − 3σ2µr1µr3l1l2l3

)

l3
εr3

+ ω2ε0µ0

3

(
2µr1l31 − 3σ2

σ1
µr3l1l2l3

)
+ jω

(
ε0l1
σ1

+ ε0l2
σ2

+ µ0µr1σ2l1l2l3
εr3

)

≈ εr3

l3

(
3∑

i=1

µrili

)
1− jωµ0µr1σ2l1l2


1−

µr3l3 − σ1µr1l21
3σ2l2

− µ2
r2l22

3µr1l1

µr1l1 + µr2l2 + µr3l3





 (2.33)

where the high-order terms like ω2 are neglected. From this approximation, we can find that

the attenuation is proportional to the square of frequency. No local minima for the attenuation

exist with respect to the conductivity and thickness parameters: σ1, σ2, l1, and l2. Thus, it is

evident that the low-frequency critical σmin in [44] and [46] cannot be applied to current MIMS

parallel-plate waveguide structure. Fig. 2.3(a) shows the equivalent circuit model and circuit

parameters. Compared with the first-order approximations, RX , LX , and GX are attributed

to the complicated EM couplings between layers.
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Figure 2.3: Equivalent circuits for the second-order approximation: (a) low-resistance substrate
with RX = ω2µ2

0

(
σ1µ

2
r1l

3
1 + σ2µ

2
r2l

3
2 − 3σ2µr1µr3l1l2l3

)
/3, GX = ε0εr3/ (µ0µr1σ2l1l2l3), and

LX = µ0

(
3σ2
σ1

µr3l1l2l3 − 2µr1l
3
1

)
/3, (b) high-resistance substrate with RX = σ2ω

2µ2
0µ

2
r2l

3
2/3.

2.3.2.2 High-resistance silicon substrate

In this case, the silicon substrate has a small conductivity σ1 (σ1 << ωε0εr1) or a loss

tangent so that γ1 ∝ ω, γ2 ∝
√

ω, and γ3 ∝ ω. Following the same process as previous section,

the second-order approximation becomes

γ2
z ≈

k2
0(µr1l1 + µr2l2 + µr3l3)− k2

0
3 µr2γ

2
r2l

3
2

l1
ε̇r1

+ l2
ε̇r2

+ l3
ε̇r3

− 1
3

(
γ2
1 l31
ε̇r1

+ γ2
2 l32
ε̇r2

+ γ2
3 l33
ε̇r3

) . (2.34)
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Corresponding A, B, and C coefficients are

A =
1
3

(
l31
ε̇r1

+
l32
ε̇r2

+
l33
ε̇r3

)
(2.35)

B =
l1
ε̇r1

+
l2
ε̇r2

+
l3
ε̇r3

+
k2

0

3
(µr1l

3
1 + 2µr2l

3
2 + µr3l

3
3) (2.36)

C = k2
0 (µr1l1 + µr2l2 + µr3l3) +

k4
0

3
ε̇r2µ

2
r2l

3
2. (2.37)

The approximation of γz yields the formulation as

γ2
z

k2
0

≈ (µr1l1 + µr2l2 + µr3l3)− jω
µ0σ2µ2

r2l32
3

l1
εr1

+ l3
εr3

+ jω ε0l2
σ2

≈ (µr1l1 + µr2l2 + µr3l3)
(

l1
εr1

+
l3
εr3

)−1

{
1− jωl2

[
µ0σ2µ

2
r2l

2
2

3(µr1l1 + µr2l2 + µr3l3)
+

ε0εr1εr3

σ2(εr1l3 + εr3l1)

]}
. (2.38)

Similarly, the attenuation is proportional to the square of frequency and no critical σmin exists in

the low-frequency approximations. Fig. 2.3(b) shows the equivalent distributed circuit model.

With γz founded, the effective permittivity εreff and attenuation α per unit length can be

calculated as

εreff =
[
Re

(
γz

k0

)]2

(2.39)

α = −Im (γz) . (2.40)

2.4 Numerical Simulation of Metal-Insulator-Metal-Semiconductor

Structures

The Newton’s method is used to solve for the eigenvalue equations of layered MIMS struc-

tures in Fig. 2.1. The relevant result is called the exact solution of (2.9) to calibrate the

first-order and second-order approximations in (2.16) and (2.32), respectively. Fig. 2.4 illus-

trates the results of the normalized wavelength λ0/λg (=
√

εreff) and attenuation constant α,

where λg and λ0 are denoted as the propagation wavelengths along the transmission line and in

free space, respectively. The normalized wavelength is also the slowing factor of propagation
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Figure 2.4: Exact and approximate solutions of propagation parameters for a 3-layered MIMS
transmission line (PEC-PEC case) with semiconductor: εr1 = 11.7, σ1 = 10S/m, l1 = 100µm,
metallization: σ2 = 3 × 107 S/m, l2 = 1µm, insulator: εr3 = 3.9, l3 = 1 µm: (a) normalized
wavelength, (b) attenuation per unit length.
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velocity. As seen from Fig. 2.4, the first-order approximation only presents the acceptable

normalized wavelength at very low frequency region, whereas an obvious deviation for the

attenuation exists if compared with the exact solution. This shows that the first-order approx-

imation is not appropriate to interpret the performance of lossy transmission lines, especially

for the loss. One the contrary, the second-order approximation presents a good agreement

with the exact solution up to about 10 GHz. Moreover, it is observed that the valid frequency

range strongly depends on the conductivity σ1 of semiconductor substrates. For instance,

the upper valid boundary of the second-order approximation is reduced to about 1 GHz when

σ1 = 1000 S/m.

Fig. 2.5 shows that the normalized wavelength and attenuation varying with the frequency

and the metallization thicknesses l2 for a MIMS shown in Fig. 2.1(a). Stepwise-convergence

phenomena are observed. The curves that stand for very thin metallization converge to the

zero-thickness limit, while thick metallization curves merge together when the frequency in-

creases. Fig. 2.5 also shows clearly that the slope of attenuation at the low frequency region is

the square of frequency, which is predicted by the imaginary part of the second-order approx-

imation in (2.33). In this PEC-PEC model, it is shown that the transmission line parameters

are influenced by the metallization thickness over a broad frequency range.

The influence of the signal strip is shown in Fig. 2.6. The PEC-PMC BCs are much closer to

the reality of open microstrip lines than the PEC-PEC case [49]. The corresponding normalized

wavelength and attenuation versus the frequency, metallization thicknesses l2, and l4 (l2 and

l4 change simultaneously and own same values) are plotted. The results of PEC-PEC cases

are also referenced for comparison. Unlike the PEC-PEC BCs that give bounded normalized

wavelengths at low frequencies, the PEC-PMC BCs give large values of effective permittivity

when the frequency decreases. This shows that the PMC BCs have more polarization effects

and higher attenuation from the top metallization layer. In the PEC-PEC cases, the PEC

shortens the top imperfect metallization and provides a perfect current return path, which

actually diminishes the loss.

In Fig. 2.7, the equivalent transmission line circuit parameters (RLCG) of a 4-layered
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MIMS line are extracted.3 The signal strip thickness l4 is fixed, while the metallization ground

thickness l2 changes. When l2 = 0, the 4-layered MIMS structure is reduced to a MIS structure.

The calculated RLCG results agree well with [49]. Fig. 2.7 shows that the thickness effects from

the thin metal ground are evident. The extracted resistance and inductance are more sensitive

to the influence of metallization thickness compared to the conductance and capacitance.

2.5 Discussion and Limitation

Although greatly simplifying the transmission line problem, the parallel-plate waveguide

model has certain inevitable limitations. First, multilayered structures are assumed to have

large width-to-height (w/h) ratios so that the fringing fields at edges are ignored. Thus, the

parallel-plate waveguide model cannot describe the leakage waves that propagate along the

lateral direction. This assumption also implies that spatial structure variations along the lateral

directions are not allowed. Structures, such as the coplanar waveguides, corrugated ground

planes, and inhomogeneous media with different depletion or doping regions, cannot be studied

by this model. Second, the propagation modes in the parallel-plate waveguides are separated

into independent TM and TE modes. But the real propagation modes for transmission lines

are often hybrid ones. Third, the parallel-palate waveguide model and transmission line circuit

model are accurate only at low frequencies. There is no a clear upper boundary of frequency to

decide where the model becomes invalid. Normally the accuracy will lost when the frequency

becomes higher than 10 GHz.

All above aspects limit the application of the parallel-plate waveguide model and equivalent

circuits to the real-world problems. But they are still good for presenting clear physical aspects

for the guided-wave systems.

3The formulation for the characteristic impedance and RLCG parameters is presented in Appendix A.
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Figure 2.5: Frequency-dependent transmission line parameters versus thickness l2 of a 3-layered
MIMS transmission line (PEC-PEC case) with semiconductor: εr1 = 11.7, σ1 = 10 S/m,
l1 = 100µm, metallization: σ2 = 3× 107 S/m, insulator: εr3 = 3.9, l3 = 1µm: (a) normalized
wavelength, (b) attenuation per unit length.
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Figure 2.6: Frequency-dependent transmission line parameters versus thickness l2 and l4 of
a 4-layered MIMS transmission line in Fig. 2.1(b), semiconductor: εr1 = 11.7, σ1 = 1 S/m,
l1 = 100µm, insulator: εr3 = 3.9, l3 = 1µm, metallization: σ2 = σ4 = 3 × 107 S/m: (a)
normalized wavelength, (b) attenuation per unit length.
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Figure 2.7: Frequency-dependent extracted R, L, C, and G per unit length versus l2 for a
4-layered MIMS Transmission line in Fig. 2.1(b) with semiconductor: εr1 = 11.7, σ1 = 1 S/m,
l1 = 100µm, insulator: εr3 = 3.9, l3 = 1 µm, metallization: l4 = 1µm, σ2 = σ4 = 3× 107 S/m
(circles: data from [49]).



www.manaraa.com

26

CHAPTER 3. THE SPECTRAL DOMAIN APPROACH FOR

GENERALIZED MULTILAYERED STRUCTURES

The SDA is one of the most popular numerical methods for analyzing planar multilayered

microwave- and millimeter-wave passive structures. Its basic methodology is very straight-

forward: introducing the Fourier transformation in the spatial domain. This transformation

results in a wave equation with less dimension in the spectral domain, which simplifies the

solving process and achieves some analytical formulations. According to [43], the SDA has

several features:

• Easy formulation for dyadic Green’s functions for multilayered structures

• Variational nature in the determination of propagation constant

• Identification of the physical natures from the solutions of basis functions

The SDA is applicable to the following structures: open and enclosed (shielded) planar

multilayered transmission lines, slow-wave transmission lines with lossy dielectric materials,

and resonators and antennas with planar configurations, etc. The numerical efficiency is the

most prominent advantage. However, this feature imposes certain restrictions and limitations.

First, the basis functions should have analytical forms after the Fourier transformation. Second,

the thickness of signal strip conductor is normally treated as infinitesimally thin.1 Third, no

discontinuity and variation of material properties along lateral directions are allowed in the

planar configures.

Because of its versatility of analyzing multilayered microwave components and patch an-

tennas, the SDA has been intensively studied for decades. In 1971, Denlinger [20] used coupled
1The modified SDA models are introduced in Chapter 4.



www.manaraa.com

27

integral equations in the spectral domain to solve single-layered open microstrip lines. In 1973,

Itoh and Mittra [21] found a systematical way to derive the spectral-domain Green’s functions

for single-layered microstrip lines, simplified the coupled integral equations into linear algebraic

ones, and solved them using the MoM. In 1977, a general spectral domain formulation for mul-

tilayered multiconductor microstrip lines was proposed by Davies and Mirshekar-Syahkal [22].

They applied the transfer matrices to match the boundary conditions on dielectric interfaces.

Later, using the complex dielectric constant and perturbation method, the dielectric loss of

multilayered structure was estimated by Mirshekar-Syahkal [24]. In 1980, Itoh [23] introduced

a numerically more robust method: the immitance approach to account for multilayered struc-

tures. Das and Pozar [52], [53] developed the general spectral-domain Green’s functions to

analyze the conductor, dielectric and radiation loss for multilayered transmission lines.

In this chapter, the spectral domain techniques and the theoretical background are intro-

duced. Section 3.1 briefly reviews the potential functions in electromagnetic theory and the

Fourier transformation. The derivation of the spectral-domain Green’s functions for the multi-

layered transmission lines is introduced in Section 3.2. In Sections 3.3 and 3.4, the propagation

constants and currents are solved by the MoM as unknown eigenvalues and eigenvectors.

3.1 Electromagnetic Theory and Integral Equation Methods

The SDA is an integral-equation-based method that requires the relevant Green’s functions

for the structure under study. The Green’s functions are the solutions of certain partial differ-

ential equation, which are obtained by using impulse sources as driving functions. The Dirac

delta is an example for the impulse function. In engineering terminology, the Green’s functions

are named as the impulse responses or transfer functions for linear and time-invariant systems.

Because of the superposition and time-invariant properties of linear systems, the output of

an arbitrary source can be represented in the form of convolution integral with the impulse

response [56]. In electromagnetic problems, the Green’s functions describe the relationship

between sources (J, M, qe, qm) and fields (E, H) under specific BCs.

The general technique for deriving multilayered Green’s functions has shown a significant
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reduction in algebraic complexity if vector and scalar potentials are used to expend the EM

fields. The spectral domain technique definitely belongs to this category. According to the

Maxwell’s equations, the electromagnetic fields in a source-free region can be expressed by the

electric and magnetic vector potentials A and F (or Hertzian potentials Πe and Πm) as [56]

E = −jωA−∇Φe − 1
ε
∇× F (3.1)

H =
1
µ
∇×A− jωF−∇Φm (3.2)

and

∇ ·A = −jωεµΦe (3.3)

∇ · F = −jωεµΦm (3.4)

where Φe and Φm are the electric and magnetic scalar potentials, respectively. ω is the angular

frequency, while ε and µ are the permittivity and permeability of dielectric. Any EM field in

source-free region can be decomposed as the linear combination of TE and TM modes that are

also complete and orthogonal basis modes. Another combination is the longitudinal-section

electric (LSE) modes and longitudinal-section magnetic (LSM) modes with respect to the

interface [57]. For example, by assuming the z axis as the longitudinal direction, arbitrary

fields in the medium (ε, µ) can be described as a superposition of the TMz and TEz modes as

A = ẑAze
−jγzz, F = 0 (TMz) (3.5)

A = 0, F = ẑFze
−jγzz (TEz) (3.6)

where γz is the propagation constant along the z axis. According to (3.3) and (3.4), the vector

potentials can be written in the form of scalar potentials Ψe and Ψm, where Ψe,m = −Φe,m.2

For the 2-dimensional problem, the scalar potential functions are the solutions of the scalar

Helmholtz equation in the spatial domain as

∇2
t Ψe,m(x, y) + (k2 − γ2

z )Ψe,m(x, y) = 0 (3.7)

2The minus sign helps to keep the formulations consistent with [21], [22].
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where k2 = ω2εµ and ∇t = ∂
∂x x̂+ ∂

∂y ŷ. Combining the TMz and TEz modes together, the field

components in the dielectric are expressed as [21]

Ez(x, y) = j
k2 − γ2

z

γz
Ψe(x, y)e−jγzz (3.8)

Et(x, y) = ∇tΨe(x, y)e−jγzz − ωµ

γz
ẑ ×∇tΨm(x, y)e−jγzz (3.9)

Hz(x, y) = j
k2 − γ2

z

γz
Ψm(x, y)e−jγzz (3.10)

Ht(x, y) = ∇tΨm(x, y)e−jγzz +
ωε

γz
ẑ ×∇tΨe(x, y)e−jγzz (3.11)

where ẑ is the unit vector of z axis. Next, if considering the Fourier transform along the x axis

as the lateral direction, we have

Ψ̃e,m(α, y) =
∫ ∞

−∞
Ψe,m(x, y)ejαxdx (3.12)

Ψe,m(x, y) =
1
2π

∫ ∞

−∞
Ψ̃e,m(α, y)e−jαxdα (3.13)

where the tilde denotes all Fourier transform quantities in the spectral domain. After the

Fourier transform, the 2-dimensional Helmholtz equation (3.7) degrades into a 1-dimensional

wave equation in the spectral domain as

∂2

∂y2
Ψ̃e,m(α, y)− γ2Ψ̃e,m(α, y) = 0 (3.14)

where γ2 = α2 + γ2
z − ω2εµ is actually the simple showing of γ2

y , the propagation constant

along the y direction. Here the property of the Fourier transform on the first derivative of a

function is applied. The general solution set for above Helmholtz equation is in the form of

sinh(γy), cosh(γy), or e±γy. (3.15)

Using these basic solutions with corresponding coefficients, all field components are explicitly

expressed, which simplifies the problem into solving unknown coefficients of potentials. This

method will be carried out in depth as follows to derive the multilayered Green’s functions.

3.2 Full-Wave Multilayered Green’s Functions in the Spectral Domain

In this section, two different methods, the transfer matrix method [22] and the spectral-

domain immitance approach (SDIA) [23], are implemented to get the multilayered Green’s
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functions. Although these two methods are mathematically equivalent, they own different

physical insights: the transfer matrix method focus more on the field components and BCs,

while the SDIA is based intensively on the physical circuit and transmission line models.
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w 

Figure 3.1: A general N -layered transmission line structure.

The configuration of a general 2-dimensional N -layered planar transmission line is illus-

trated in Fig. 3.1. The cross section is located on the xoy plane. All layers are uniform and

infinite in both x and z directions. The absolute interface height of the interface between the

ith and (i + 1)th layers is defined as hi. Likewise, ∆hi is the layer thickness. Dielectric pa-

rameters are the permittivity εi, permeability µi, and conductivity σi. The signal strip with a

width w is mounted on the interface ht and normally modeled as the infinitesimally thin PEC.

For the uppermost and lowermost layers (i = 1, N), the most common BCs are the free space

(open), PEC (shielded), and PMC. In this structure, guided waves are assumed to propagate

along the z direction. Using the auxiliary electrical potential Ψ̃e and magnetic potential Ψ̃m

in the spectral domain, the Green’s functions are derived as follows.

3.2.1 Spectral-Domain Transfer Matrix Method

The procedures similar to [22], [25] are followed. The whole region is divided into two parts:

layers above and below the signal strip. The recursive transfer matrices for these two parts

can be deduced to match the BCs. There are two kinds of spatial BCs on dielectric interfaces:
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the ones with and without the signal strips.

Ez,i = Ez,i+1 (3.16)

Ex,i = Ex,i+1 (3.17)

Hz,i −Hz,i+1 =





0 (i 6= t)

−Jxe−jγzz (i = t)
(3.18)

Hx,i −Hx,i+1 =





0 (i 6= t)

Jze
−jγzz (i = t)

(3.19)

The BCs in the spectral domain hold the similar formulation as above by applying the Fourier

transform. In the following, the solutions for these two regions will be represented to derive

the Green’s functions on the interface ht.

3.2.1.1 Layers below the signal strip

For each layer, the general potential solutions for the wave equation (3.14) are

Ψ̃e,i = Aie
γi(y−hi−1) + Bie

−γi(y−hi−1)

Ψ̃m,i = Cie
γi(y−hi−1) + Die

−γi(y−hi−1)
(i = 1, 2, 3, . . . , t, hi−1 ≤ y < hi) (3.20)

where γ2
i = α2 + γ2

z − ω2εiµi. Ai, Bi, Ci, and Di are unknown coefficients and functions of α.

Writing field components in the potential form, the BCs on the interface hi are matched as




−jγzẼz(hi)

−jγzH̃z(hi)

Ẽx(hi)

H̃x(hi)




=




k2
i − γ2

z k2
i − γ2

z 0 0

0 0 k2
i − γ2

z k2
i − γ2

z

−jα −jα ωµiγi
γz

−ωµiγi
γz

−ωεiγi

γz

ωεiγi

γz
−jα −jα







Aie
γi∆hi

Bie
−γi∆hi

Cie
γi∆hi

Die
−γi∆hi




=




k2
i+1 − γ2

z k2
i+1 − γ2

z 0 0

0 0 k2
i+1 − γ2

z k2
i+1 − γ2

z

−jα −jα ωµi+1γi+1

γz
−ωµi+1γi+1

γz

−ωεi+1γi+1

γz

ωεi+1γi+1

γz
−jα −jα







Ai+1

Bi+1

Ci+1

Di+1




(3.21)
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where ∆hi = hi−hi−1 (i = 2, 3, . . . , t−1), h0 = 0, and k2
i = ω2εiµi. Thus it is straightforward

to express the coefficients Ai, Bi, Ci and Di in the form of Ai−1, Bi−1, Ci−1, and Di−1




Ai

Bi

Ci

Di



≡

[
Ti

]−1 [
Ti−1

] [
D(γi−1∆hi−1)

]




Ai−1

Bi−1

Ci−1

Di−1



≡

[
Mi,i−1

]




Ai−1

Bi−1

Ci−1

Di−1




(3.22)

where i = 3, 4, . . . , t (not including the first layer). The defined matrices [T ] and [D] are

[
Ti−1

]
=




k2
i−1 − γ2

z k2
i−1 − γ2

z 0 0

0 0 k2
i−1 − γ2

z k2
i−1 − γ2

z

−jα −jα ωµi−1γi−1

γz
−ωµi−1γi−1

γz

−ωεi−1γi−1

γz

ωεi−1γi−1

γz
−jα −jα




(3.23)

and

[
D(γi−1∆hi−1)

]
=




eγi−1∆hi−1

e−γi−1∆hi−1

eγi−1∆hi−1

e−γi−1∆hi−1




. (3.24)

The inverse matrix of [Ti] has an analytical form as

[
Ti

]−1

=
1

2(k2
i − γ2

z )




1 −j αγz

ωγiεi
0 −γz(k2

i−γ2
z )

ωγiεi

1 j αγz

ωγiεi
0 γz(k2

i−γ2
z )

ωγiεi

j αγz

ωγiµi
1 γz(k2

i−γ2
z )

ωγiµi
0

−j αγz

ωγiµi
1 −γz(k2

i−γ2
z )

ωγiµi
0




. (3.25)

From above equation that links the coefficients between the ith and (i − 1)th layers, we can

write the chained backward transfer matrices starting from the layer t as



At

Bt

Ct

Dt




=
[
Mt,t−1

] [
Mt−1,t−2

] [
Mt−2,t−3

]
. . .




Ã

0

C̃

0




(3.26)
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where Ã and C̃ are unknown coefficients for the lowermost layer (i = 1). Basically, three

different BCs are commonly used for this layer: the PEC and PMC on the interface h0, and

the open space on h1 where material (ε1, µ1) fills all the half space below h1. The corresponding

matrices are formulated in Appendix B.

3.2.1.2 Layers above the signal strip

Similarly, if considering the symmetry, the general solutions for the wave equation in y

direction are written as

Ψ̃e,i = Aie
γi(y−hi) + Bie

−γi(y−hi)

Ψ̃m,i = Cie
γi(y−hi) + Die

−γi(y−hi)
(i = t + 1, . . . , N, hi−1 ≤ y < hi). (3.27)

On the interface hi, the neighboring coefficients are matched with BCs in the matrix form as



Ai

Bi

Ci

Di



≡

[
Ti

]−1 [
Ti+1

] [
D(−γi+1∆hi+1)

]




Ai+1

Bi+1

Ci+1

Di+1



≡

[
M ′

i,i+1

]




Ai+1

Bi+1

Ci+1

Di+1




(3.28)

where

[
D(−γi+1∆hi+1)

]
=




e−γi+1∆hi+1

eγi+1∆hi+1

e−γi+1∆hi+1

eγi+1∆hi+1




(3.29)

∆hi+1 = hi+1 − hi and i = t, t + 1, . . . , N − 2. The matrix [T ] keeps the same definition as

before. Thus the chained forward transfer matrices for the layers above ht are



At

Bt

Ct

Dt




=
[
M ′

t,t+1

] [
M ′

t+1,t+2

] [
M ′

t+2,t+3

]
. . .




0

B̃

0

D̃




. (3.30)

Different BCs on the interface hN relate to specific matrices that are listed in Appendix B.
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3.2.1.3 Spectral-domain Green’s functions on the interface ht

On the interface ht where the signal strip is located, there exist electric current sources

as J̃x and J̃z. According the BCs of (3.16)-(3.19), the relationship between coefficients of

potentials and current sources can be written in the matrix form as

[
Tt

] [
D(γt∆ht)

] [
Mt,t−1

] [
Mt−2,t−3

]
. . .




Ã

0

C̃

0




−
[
Tt+1

] [
D(−γt+1∆ht+1)

] [
M ′

t+1,t+2

] [
M ′

t+2,t+3

]
. . .




0

B̃

0

D̃




=




0

jγzJ̃x

0

J̃z




(3.31)

where J̃x and J̃z are surface current densities in the spectral domain. Coefficients Ã, B̃, C̃,

and D̃ are dependent on the BCs on h0 and hN . For the diagonal matrix [D], the common

exponential entries can be extracted, then the matrices are reformed as

[
D(γi∆hi)

]
= eγi∆hi




1

e−2γi∆hi

1

e−2γi∆hi




(i = 2, . . . , t) (3.32)

[
D(−γj∆hj)

]
= eγj∆hj




e−2γj∆hj

1

e−2γj∆hj

1




(j = t + 1, t + 2, . . . , N − 1). (3.33)

Such common factors can be extracted further from chained matrices and combined with the

unknown coefficients Ã, B̃, C̃, and D̃. Now the remaining part of [D] matrix only has finite-

value entries. With this technique, a simplified form of (3.31) is achieved with new notations
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of the cascaded matrices [K] and [L] as

[
K

]




Ãe
Pt

i=2 γi∆hi

0

C̃e
Pt

i=2 γi∆hi

0



−

[
L

]




0

B̃e
PN−1

j=t+1 γj∆hj

0

D̃e
PN−1

j=t+1 γj∆hj




=




0

jγzJ̃x

0

J̃z




(3.34)

where [K] and [L] matrices have no large exponential entries that can cause overflow problem

when the argument α is large. Rearranging above (3.34), it yields



Ãe
Pt

i=2 γi∆hi

C̃e
Pt

i=2 γi∆hi

B̃e
PN−1

j=t+1 γj∆hj

D̃e
PN−1

j=t+1 γj∆hj




=




k1,1 k1,3 −l1,2 −l1,4

k2,1 k2,3 −l2,2−l2,4

k3,1 k3,3 −l3,2−l3,4

k4,1 k4,3 −l4,2−l4,4




−1 


0

jγzJ̃x

0

J̃z



≡

[
V

]




0

jγzJ̃x

0

J̃z




(3.35)

where ki,j and li,j are (i, j)th entries of the matrices [K] and [L], respectively. For particular

current sources on the strip, above equation gives Ã and C̃ or B̃ and D̃, as middle variables, to

connect electric fields Ẽx and Ẽz with the current sources J̃x and J̃z. Thus the corresponding

Green’s functions on the interface ht are



Ẽx

Ẽz


=




G̃xx(α, γz) G̃xz(α, γz)

G̃zx(α, γz) G̃zz(α, γz)







J̃x

J̃z


 (3.36)

where

G̃xx = jγz(k3,1v1,2 + k3,3v2,2) = jγz(l3,2v3,2 + l3,4v4,2) (3.37)

G̃xz = k3,1v1,4 + k3,3v2,4 = l3,2v3,4 + l3,4v4,4 (3.38)

G̃zx = −(k1,1v1,2 + k1,3v2,2) = −(l1,2v3,2 + l1,4v4,2) = G̃xz (3.39)

G̃zz =
j

γz
(k1,1v1,4 + k1,3v2,4) =

j

γz
(l1,2v4,2 + l1,4v4,4) (3.40)

and vi,j is the (i, j)th entry of the matrix [V ]. The dimension of the Green’s functions is

Ohm (Ω) that is same as the surface impedance. After the Fourier transform, the convolution

integral in the spatial domains becomes the algebraic multiplication in the spectral domain.

Another important advantage of (3.36) is that the order of matrix is not dependent on the

number of dielectric layers but on the representation of current sources.
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3.2.2 Spectral-Domain Immitance Approach

In the transfer matrix method, the unknown coefficients of potentials act as the bridge

between electric fields and current sources. However, the derived Green’s functions are obscure

to gain physical insights into the problem. In addition, the transfer matrix method is relatively

slow due to the matrix inverse operation for [V ]. The SDIA proposed by Itoh [23] overcomes

these disadvantages, and has less complexity and higher numerical efficiency.
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Figure 3.2: Transformation between the (u, v) and (x, y) coordinates as in [23].

The SDIA basically implements equivalent transverse transmission line models to sources

and fields. Unlike the transfer matrix method, this approach divides hybrid fields into TMy

and TEy modes. If all transverse components in the (x, z) coordinate are rotated into the new

coordinate as the (u, v) shown in Fig. 3.2 as



û

v̂


 =



− cos θ sin θ

sin θ cos θ







x̂

ẑ


 (3.41)

where cos θ = γz/
√

α2 + γ2
z , the original boundary-value problem is decomposed into two in-

dependent transmission line equations. For each θ, waves are decoupled into TMy (Ẽy, Ẽv, H̃u)

and TEy (H̃y, H̃v, Ẽu) modes in the (u, v) coordinate. Furthermore, the current J̃v, which

relates to H̃u, excites the TMy mode only. Likewise, J̃u excites the TEy modes only.

Fig. 3.3 shows two equivalent N -layered transmission lines for TE and TM modes separately.

The current source is located on the interface ht. The relationship between the transverse
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Figure 3.3: Equivalent transmission line models for TE- and TM-modes in multilayered struc-
tures [23].

electric fields (Ẽu and Ẽv) and current sources (J̃u and J̃v) on ht can be written in a matrix

notation as 


Ẽu

Ẽv


 =



−1/Ỹ TE 0

0 −1/Ỹ TM







J̃u

J̃v


 =



−Z̃TE 0

0 −Z̃TM







J̃u

J̃v


 (3.42)

where Ỹ TE and Ỹ TM are the driving-point admittances for TE and TM modes, respectively.

Equation (3.42) is also the Green’s function in the (u, v) coordinate. The driving-point admit-

tance can be calculated directly from two equivalent admittances as looking-up and looking-

down from the interface ht

Y TE/TM = Y TE/TM
up + Y

TE/TM
down (3.43)

where Y
TE/TM
up and Y

TE/TM
down are in parallel. The equivalent admittances can be readily cal-

culated from the impedance transformation of transmission lines recursively

Y TE/TM = Y
TE/TM
0

Y
TE/TM
L + Y

TE/TM
0 tanh(γ∆h)

Y
TE/TM
0 + Y

TE/TM
L tanh(γ∆h)

(3.44)

where γ and ∆h are the propagation constant and layer thickness. Y
TE/TM
L is the loaded

admittance from previous interface. Y
TE/TM
0 is the wave characteristic admittance

Y TM
0 =

jωε

γ
and Y TE

0 =
γ

jωµ
. (3.45)
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Using the coordinate rotation (3.41) back to the (x, z) coordinate, the Green’s functions that

are equivalent to (3.36) can be obtained as

G̃xx = − (
cos2 θZTE + sin2 θZTM

)
= −γ2

zZTE + α2ZTM

α2 + γ2
z

(3.46)

G̃xz = − cos θ sin θ
(
ZTM − ZTE

)
= −αγz

(
ZTM − ZTE

)

α2 + γ2
z

(3.47)

G̃zz = − (
sin2 θZTE + cos2 θZTM

)
= −α2ZTE + γ2

zZTM

α2 + γ2
z

(3.48)

G̃zx = G̃zx. (3.49)

For the uppermost or lowermost layer, the admittance formulation depends on the BCs as the

transfer matrix method. From the discussion, the SDIA can be conveniently extended to the

multilayered-multiconductor structures.

3.3 The Method of Moments and Eigenvalue Problems

In this section, the linear system of equations (3.36) is solved by the MoM [58]. Given in

general forms, all equations that we are concerned can be expressed as

Lf = g (3.50)

where L is a linear operator that represents the system. f is an unknown function that refers

to the response, while g is a known function that defines the source. For EM problems, f is

unique when the BCs and g are specified. The basic idea of MoM is to project the unknown

function f onto some vector space bases {fn} in an inner product space as

f∗ =
M∑

n=1

cnfn (3.51)

where cn are unknown coefficients; M is the total number of bases. The approximation f∗

should approach f when M increases. With defined inner product < ·, · >, the difference

between the exact solution Lf and the projection Lf∗ is orthogonal to a function set called

testing function or weighting function tm, which yields

M∑

n=1

cn < tm, Lfn >=< tm, g >, m = 1, 2, . . . , M (3.52)
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where M is also the total number of testing functions. By using the basis function fn and

testing function tm, the MoM reduces the problem into linear equations of unknown coefficients

cn. The solution accuracy and computation efficiency depend intensively on the choice of {fn}
and {tm}. There are two well-known techniques to choose the testing function. One is the point

matching method that uses delta functions as testing functions. The other is the Galerkin’s

method where testing functions are the same as basis functions. The Galerkin’s method with

a real operator results in a variational quality and a same procedure as the Rayleigh-Ritz

method [43]. As long as a good choice made for basis functions, the Galerkin’s method can

give reasonable and accurate solutions.

To solve the current equations in (3.36), the first step is to expand the unknown currents

on the signal strip in terms of basis functions as follows [59]

J̃x(α) =
Mx∑

m=1

amJ̃x,m(α), J̃z(α) =
Mz∑

n=1

bnJ̃z,n(α) (3.53)

where am and bn are unknown coefficients. The BCs require currents to be nonzero only on

the signal strip and zero in other regions. These basis functions should also be incorporated

with the singular behavior of the magnetic fields near the conductor edges. For instance, if we

choose only one basis function for Jx and Jz, respectively, the current components can have

the forms as [20]

Jz(x)=





1 + |2x/w|3, |x| < 0.5w

0, elsewhere
(3.54)

Jx(x)=





sin [πx/(0.8w)] , |x| < 0.4w

± cos [πx/(0.2w)] , 0.4w < |x| < 0.5w

0, elsewhere

(3.55)

whose corresponding Fourier transforms are

J̃z(α)=
2

α(αw)3

{
24 + 3

[
(αw)2 − 8

]
cos

(αw

2

)
+ αw

[
(αw)3 − 12

]
sin

(αw

2

)}
(3.56)

J̃x(α)=j2w

[
αw cos(0.4αw)

(1.25π)2 − (αw)2
+

5π sin(0.5αw)− αw cos(0.4αw)
(5π)2 − (αw)2

]
. (3.57)
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Another widely used current basis function set is the Chebyshev polynomial with edge singu-

larity [57]

Jz(x)=
Mz∑

n=0

bn
T2n(2x/w)√
1− (2x/w)2

(3.58)

Jx(x)=
√

1− (2x/w)2
Mx∑

m=1

jamU2m−1(2x/w) (3.59)

where T2n and U2m−1 are Chebyshev polynomial and Chebyshev polynomial of the second

kind, respectively. The Fourier transformations are

J̃z(α)=
Mz∑

n=0

bn
πw

2
(−1)nJ2n(αw/2) (3.60)

J̃x(α)=
Mx∑

m=1

jam(−1)m 2πm

α
J2m(αw/2). (3.61)

where J2n and J2m are the Bessel functions of the first kind.

By substituting above current bases in (3.36) and defining the infinite integral over α as

the inner-product, the Galerkin’s method yields
Mx∑

m=1

amKxx
i,m +

Mz∑

n=1

bnKxz
i,n =

∫ ∞

−∞
J̃x,i(α)Ẽx(α)dα, i = 1, 2, . . . , Mx

Mx∑

m=1

amKzx
j,m +

Mz∑

n=1

bnKzz
j,n =

∫ ∞

−∞
J̃z,j(α)Ẽz(α)dα, j = 1, 2, . . . , Mz

(3.62)

where Kpq
kl is the integration related to the inner product of the Green’s functions and current

bases

Kpq
kl =

∫ ∞

−∞
J̃p,k(α)G̃pq(α, γz)J̃q,l(α)dα, p, q = x, z. (3.63)

The right hand sides of (3.62) become zero because of the complementary spatial distribution

of electric fields and currents on the interface ht. The BCs require surface currents Jx,i and

Jz,j to be nonzero only on signal strips, for example |x| < w/2, and to vanish otherwise.

On the contrary, tangential electric fields Ex and Ez must be zero on the surfaces of PEC

strips. According to the Parseval’s theorem, above right hand sides equal to zero after being

transformed into the spatial domain.
∫ ∞

−∞
Ẽx(α)J̃x,i(α)dα = 2π

∫ ∞

−∞
Ex(x)Jx,i(−x)dx = 0

∫ ∞

−∞
Ẽz(α)J̃z,j(α)dα = 2π

∫ ∞

−∞
Ez(x)Jz,j(−x)dx = 0

(3.64)
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Then the problem changes into a homogeneous system of Mx+Mz linear equations with respect

to the unknown coefficients am and bn. It can be written into a matrix form as

[
K(γz)

] [
a1 a2 . . . aM b1 b2 . . . bN

]T

= 0 (3.65)

where [K] is a matrix with a dimension of Mx + Mz; γz is the unknown propagation constant.

Because of the existence of nonzero solutions for coefficients am and bn, the determinant value

of the matrix [K] must be zero

det [K(γz)] = 0. (3.66)

Note that above equation is a nonlinear eigenvalue problem. The propagation modes and

eigenvalues of the system directly correspond to the zeros of determinant. Unknown current

coefficients are found by the eigenvector that relates to the zero eigenvalue of [K]. Nonlinear

root-finding algorithms need to be applied to search the appropriate γz and associated coef-

ficients am and bn. The propagation constant γz is an important parameter for transmission

lines, from which the other electrical parameters can be further evaluated. These topics will

be discussed in the following chapters.

Strictly speaking, for eigenvalue problems of EM structures, the feasible eigenvalues and

modes are neither dependent on nor related to the outer sources. Eigenvalues are intrinsic

properties determined by the material specifics and BCs. For example, the propagation modes

of a waveguide and the resonant frequencies of a cavity can be calculated without considering

the source. However, using the integral-equation approach to solve the eigenvalues for trans-

mission lines has a slightly different physical aspect. The procedure is more like exciting certain

modes with definite current bases. To achieve high computation efficiency and accuracy, the

basis functions should be chosen as close as possible to the real current distribution of certain

mode. Furthermore, more terms of current bases should be used to capture the high order

modes.
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CHAPTER 4. THE MODELING OF REAL METAL COMPONENTS

WITH FINITE THICKNESS

Discussed in the previous chapter, most researchers modeled the metal components as PECs

with infinitesimal thickness and infinite conductivity. However, in real interconnect networks,

all metallization parts are made of imperfect conductors with large but finite conductivities.

The relevant frequency-dependant skin effect and current proximity effect cannot be accu-

rately described by the PEC model. Furthermore, the zero-thickness PEC approximation is

feasible only when the width-to-thickness (w/t) ratio of conductor is large enough. Jäger [46]

reported that the dominating influence of imperfect conductors on the propagation constant

and attenuation cannot be neglected. Thus, this chapter intends to analysis the effects from

the imperfect metal components. The major influences from the thin-film metal ground are

studied by comparing different models. Meanwhile, approximate models for the signal strips

are studied.

In this chapter, Section 4.1 focuses on the modeling of thin metallization ground planes.

Section 4.2 discusses the modeling of signal strips with finite thickness. Different models are

compared using numerical simulation results. Conclusions are discussed in Section 4.3.

4.1 Modeling of the Thin Metal Ground Layer

As mentioned in Chapter 1, the thin ground layer sandwiched in multilayered structures

is usually fabricated with a metallization thickness from several angstroms (Å) to several

microns. However, this metallization thickness may be comparable to the skin depth at some

low frequencies, which causes the EM field penetration. To study this penetrable conductor

film, several approximate models are compared with the exact solution to test the validity.
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4.1.1 Models for Thin-Film Conductors

Fig. 4.1 illustrates the geometry of a multilayered microstrip line. The signal strip is

located on the interface hi+1 with a width w. A thin-film metal ground layer (gray region),

with a thickness t,1 is one layer below the strip. The signal strip and the lowest boundary are

treated as zero-thickness PECs so that we can investigate the influence attributed only from

the thin-metal ground layer.
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t 

Figure 4.1: Geometry and equivalent transmission line models for a multilayered microstrip
structure.

For such finite thin metallization layer, the PEC and IBC are not proper because they are

impenetrable BCs and cannot describe the EM leakage phenomenon. In the literature, several

approximate models were proposed such as the resistive sheet (R-card) [60], [61], TE/LSE- and

TM/LSM-mode sheet impedance [62], etc. However, little comparison has been made among

these models by far.

Using the SDIA, each layer is strictly modeled as the TEy (LSE) and TMy (LSM) mode

admittances [63]. The highly conductive layer can be modeled by a complex relative permit-

tivity ε̇r as (2.1). Thus the equivalent cascaded impedance Zdown,i seen downwards from hi

1Here t is the metallization thickness, not the layer index used in the pervious chapter.
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(in the negative y direction) is given as [23]

Z
TE/TM
down,i = ZTE/TM

m

Z
TE/TM
L,i−1 + Z

TE/TM
m tanh(γct)

Z
TE/TM
m + Z

TE/TM
L,i−1 tanh(γct)

ZTE
m = jωµ/γc, ZTM

m = γc/(jωε0ε̇r) (4.1)

γ2
c = α2 + γ2

z − ω2ε0ε̇rµ

where Z
TE/TM
L,i−1 is the equivalent wave impedance seen downwards from hi−1. γc is the wave

number in conductor. In this section, this model is regarded as one exact solution to calibrate

the other approximate models.

The IBC describes the relationship between the electric and magnetic fields on the bound-

ary, which is defined as the surface impedance, when the metallization thickness is much thicker

than the skin depth. This metallization layer attenuates transmitted waves and eventually be-

comes impenetrable [60]. The surface impedance can be approximated as

ZS =
1 + j

σδ
, δ =

√
2

ωµσ
(4.2)

where ZS is also called the intrinsic impedance for a good conductor. When the thickness t of

the metal layer is much smaller than the skin depth δ, the IBC model becomes inappropriate.

Thus, Konno [64] replaced the characteristic impedance Zm by the surface impedance ZS and

used it in cascaded transmission line model (4.1) with γc = (1 + j)/δ.

Another widely used approximation is called the electrically resistive sheet (R-card) or thin

dielectric sheet. For a good conductor, it has the formulation as [60], [65]

RSH =
1
σt

, t << δ. (4.3)

For a thin film conductor with high conductivity and small t, this sheet resistance is equivalent

to a shunt resistance in the cascaded of transmission line model [61], [65].

However, above IBC and sheet resistance models neglect the dependency of the surface

impedance on the TE/TM modes of hybrid EM fields inside conductor. Considering this,

Amari et al. [62] represented a TE/TM-mode sheet impedance model

Z
TE/TM
SH,i = ZS

Z
TE/TM
L,i−1 + ZS tanh(γct)

Z
TE/TM
L,i−1 tanh(γct) + ZS [1− 1/ cosh(γct)]

(4.4)
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where Z
TE/TM
L,i−1 and γc are defined as same as (4.1). Z

TE/TM
SH,i is derived as the tangential

electric field over current density (Etan/J). When t goes to zero, Z
TE/TM
SH converges to the

RSH and becomes a shunt impedance. When t becomes very large, Z
TE/TM
SH converges to the

surface impedance ZS [62].

4.1.2 Model Comparison for the Dispersion of multilayered Microstrip

In this section, previously mentioned models are first compared on the basis of a simple

two-layered planar structure as shown in Fig. 4.2. The structure consists of a thin conductive

slab with a thickness t. Its conductivity σ is equal to 5.88×107 S/m. The slab is backed by

the infinite free space. The equivalent input impedances, Zin, are calculated at 10 GHz by

using the transmission line formula (4.1), IBC (4.2), R-card (4.3), and TE/TM-mode sheet

impedance (4.4), respectively.

The characteristics of the input impedance versus the slab thickness are investigated.

Figs. 4.2 and 4.3 show input impedances for both TE and TM modes as functions of thickness t.

The real and imaginary parts of the impedance are plotted separately. The thickness of metal

slab t is normalized by the skin depth as t/δ, while the impedance is normalized by the surface

resistance RS(= 1/(σδ)). A medium value of γc is adopted by setting α2 + γ2
z = 10ω2ε0µ0

in (4.1). The surface resistance RS is directly related to ZS . Thus, in Figs. 4.2 and 4.3, the

impedances of the exact immitance approach and the TE/TM-mode sheet impedance model

converge to the IBC surface impedance ZS when t becomes about 2δ to 3δ.

The R-card model only agrees with others when t is rather small. For the real part of

impedance, the R-card model requires that t is at least less than one skin depth; for the

imaginary part of impedance, it requests that t is less than one tenth of the skin depth.

Otherwise the R-card model diverges significantly. When t increases, the input impedance Zin

of R-card model goes to zero, hence the thin conductive slab can be regarded as a PEC. This

phenomenon is related to the fact that the resistive sheet is modeled as a shunt resistance

with the free-space impedance. As the thickness t increases, RSH(= 1/(σt)) becomes small

enough to be dominant for the equivalent Zin. Thus, physically, the R-card model tends to
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Figure 4.2: TE-mode equivalent input impedance Zin as the function of t/δ (Zin is normalized
by the surface resistance RS = 1/(σδ).), models: Z(IMM) (exact immitance approach) (4.1),
Z(R-card) (4.3), Z(TE-mode sheet impedance) (4.4), conductive slab σ: 5.88 × 107 S/m, f :
10 GHz, α2 + γ2

z = 10ω2ε0µ0: (a) real parts, (b) imaginary parts.
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Figure 4.3: TM-mode equivalent input impedance Zin normalized by RS as function of t/δ with
same parameters in Fig. 4.2, models: Z(IMM) (exact immitance approach) (4.1), Z(R-card)
(4.3), Z(TM-mode sheet impedance) (4.4): (a) real parts, (b) imaginary parts.
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make the equivalent impedance be a PEC when the thickness t is relatively large. But under

this condition, the skin depth δ is on the same order with t, which violates the assumption

that t is negligible. As a result, the R-card model will break down.

Next, previous models are implemented into a more complicated transmission line structure

to study their validity on the overall electrical performance. This structure is actually a MIMI

transmission line with a thin metallization ground inserted as illustrated in Fig. 4.4(b).

The effective permittivity εreff and attenuation constant as functions of frequency are plot-

ted in Figs. 4.4(a) and 4.4(b). In Fig. 4.4(a), all models describe the slow-wave phenomena

(high effective permittivity and small phase velocity) at low frequencies. At high frequen-

cies the dominant mode is the quasi-TEM mode. The curves of immitance approach and

TE/TM-mode sheet impedance model converge into the dashed line that represents the IBC

or infinite-thickness metal BC. In these conditions, the metallization layer becomes completely

opaque to block EM fields from reaching lower substrates. In addition, with frequency in-

creasing, all curves approach the lowest dot line that stands for the situation when the thin

metallization layer is modeled as a PEC (σ = ∞) and the microstrip line becomes lossless.

Moreover, when being compared with the exact immitance model, the IBC is appropriate

for the εreff merely when the metal ground layer is much thicker than at least 2δ. Similarly, the

TE/TM-mode sheet impedance is also more accurate at higher frequencies than lower ones.

On the contrary, the R-card model behaves very close to the TE/TM-mode sheet impedance

model at lower frequencies. But it differs from others in the high frequency region where the

R-card converges to the lowest PEC boundary faster than others. This is due to the tendency

of the R-card model to degrade the equivalent impedance into a PEC as discussed before in

Figs. 4.2 and 4.3. Fig. 4.4(b) shows the attenuation changes as a function of frequency. When

the thickness t is equal to the relevant skin depth δ, the curves of the IBC and immitance

approach merge together. At the low frequency region, the attenuation is proportional to

the square of the frequency, which is also predicted by the parallel-plate waveguide model in

Chapter 2. In addition, if compared with the R-card model, the TE/TM-mode sheet impedance

model shows a better agreement with the exact result at higher frequencies.
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Figure 4.4: Dispersive characteristics for a MIMI microstrip using different models for finite
metallization, lower dielectric: 80µm, εr: 10.2, upper dielectric: 20 µm, εr: 10.2, w: 200µm,
metal layer thickness: 5µm, σ: 5.8×107 S/m: (a) effective relative permittivity, (b) attenuation
constant per unit length.
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Figure 4.5: Relative errors for the R-card and TE/EM-mode sheet impedance as functions
of frequency and thickness t for the same MIMI structure in Fig. 4.4: (a) errors of effective
permittivity, (b) errors of attenuation constant.
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Finally, the relative accuracy of the R-card model and TE/TM-mode sheet impedance

model is compared. Fig. 4.5 illustrates how the relative errors of effective permittivity and

attenuation vary with the frequency and thickness t. The result of the immitance approach is

used as exact solution. Both Figs. 4.5(a) and 4.5(b) show that the thinner the ground layer,

the better the accuracy. But one pronounced phenomenon is that, for a fixed thickness t, the

relative errors of the permittivity and attenuation do not decrease but are almost constant as

frequency drops. Furthermore, for the attenuation, the TE/TM-mode sheet impedance model

shows better accuracy at higher frequencies, whereas the R-card model has less error at the

lower frequencies. In the transition region, the error of the R-card model increases and becomes

even worse. The reason is that the R-card model overdoes the equivalent PEC approximation.

This means that the two models still have noticeable errors even when t is negligible compared

to the skin depth. This invalidation comes from the violation of model assumptions. The R-

card model was proposed originally to the EM scattering problems with thin conductive film

when the tangential incident electric field is dominant. The TE/TM-mode sheet impedance,

similarly, is derived as the definition of the tangential electric field over current density. So the

normal component of polarization current is regarded to be insignificant inside of the sheet [66].

However, such assumptions are not very suitable for the multilayered microstrip lines. For the

quasi-TEM approximation, the normal component of the electric field (Ey) is too dominant to

be ignored. On the whole, Fig. 4.5 shows that the R-card cannot maintain a constant error over

a broad frequency range, while the TE/TM-mode sheet impedance model poses a modestly

improved accuracy with frequency increasing.

4.2 Modeling of the Metal Signal Strip With Finite Thickness

The effect of signal strips with finite thickness and conductivity is an important factor

that affects the propagation characteristics of transmission lines. This topic has attracted

intensive research efforts. The full-wave analysis has been carried out by several techniques

like the mode matching method, FEM, and MoL, etc. The integral-equation-based approaches

are also versatile for this purpose. Although the original SDA is limited to the infinitesimal
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PEC BCs. Many following works have extended the SDA to analyze the lossy transmission

lines with finite-thickness signal strips. In [67], a two-level model was used to approximate the

moderately thick conductors on the top and bottom surfaces with two PEC BCs. A N -layer

model was applied to evaluate the conductor loss [68]. With the concept of surface impedances,

several modified SDAs were proposed for microstrip lines with finite metallization thickness

and conductivity in [53], [69]-[73]. A complex resistive boundary condition was applied to solve

for the thin superconducting strip lines [69]. Liou and Lau [72] found the surface impedance

works as the internal impedance of the driving current element in the equivalent transmission

line circuits. In [73], a two-plate quasi-TEM surface impedance model was used in the spectral

domain. Similar two-port models were also widely used in [50], [53], [74], and [75]. In [76],

all three components of strip currents were considered in the modified SDA. The rigorous

integral-equation formulation with dyadic Green’s function was proposed for the skin effect of

conductor strips [77]. A generalized transverse-resonance-diffraction approach was developed

for the modeling of planar structures with thick lossy conductors [78].

In the following sections, the basic concept of the modified spectral domain approach will

be introduced with several approximate models for the surface impedances. Numerical tests

for a MIS transmission line structure will be carried out in the end.

4.2.1 The Modified Green’s Functions

As introduced in Chapter 3, the dyadic spectral-domain Green’s functions describe the

relationship between the interface field Ẽ and surface current J̃s as [70]

Ẽ = ¯̃GJ̃s. (4.5)

where ¯̃G is the matrix form of dyadic spectral-domain Green’s functions in (3.36). When the

conductors in transmission lines are modeled as PECs, there exist no tangential electric fields

on conductors, whereas the currents only have finite values instead. The homogenous equation

(3.65) with a zero right hand side can be obtained by the Galerkin’s method. However, for the

imperfect conductors, tangential electric fields are nonzero on the conductor surfaces. Now the
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electric field on the interface can be divided into two parts as a linear superposition

Ẽ = Ẽc + Ẽd (4.6)

where Ẽc is the Fourier transform of the interface field on conductor surfaces, while Ẽd is the

Fourier transform of the field outside the conductors. Because the equivalent magnetic current

is negligible for good conductors [79], the relationship between Ẽc and J̃s on the isotropic

imperfect conductors can be described by a surface-typed impedance Z̃s (Ω)

Ẽc = Z̃sJ̃s. (4.7)

For perfect conductors, the Zs = 0. By expressing Ẽc in the form of J̃s, the new Green’s

functions become

Ẽd =
( ¯̃G− Z̃sI

)
J̃s (4.8)

where I is an identity matrix. It is apparent that the currents J̃s has a complementary distri-

bution with the electric field Ẽd in the spatial domain. So by applying the Galerkin’s method

with the Parseval’s theorem, above integral equation is changed into a homogeneous system

like (3.65). Thus the modified Green’s functions have diagonal terms that relate to the surface

impedance as

( ¯̃G− Z̃sI
)

=




G̃xx(α, γz)− Z̃s G̃xz(α, γz)

G̃zx(α, γz) G̃zz(α, γz)− Z̃s


 . (4.9)

This modified Green’s functions can be regarded as a perturbation from (3.36).

4.2.2 Models for the Surface-Typed Impedances

For the surface-typed impedance of finite metallization strips, the models for the thin metal

ground in Section 4.1 are also applicable. For example, when strips are thick, the surface

impedance (4.2) for IBC can be used, while the sheet resistance (R-card) model in (4.3) is

suitable for very thin strips. The surface impedance using the transmission line model in (4.1)

is appropriate too. In addition, Krowne [74] proposed another approximate surface impedance
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by weighting the field components in the two-port models

Z̃s =
1
σt

(1+j)t
δ

tanh
[

(1+j)t
δ

] . (4.10)

4.2.3 Numerical Simulation Results

In this section, a MIS structure with finite metallization for signal strip is simulated using

different models mentioned previously. The structure consists of a 250µm silicon substrate

with σ = 5 S/m and εr = 12. The thin silicon dioxide layer has a thickness of 1µm and εr = 4.

The signal strip is 160µm wide and 1µm thick. Its conductivity is equal to 5.88×107 S/m. The

models of the R-card, IBC, transmission line, and Krowne’s formula (4.10) are implemented.

The results are illustrated in Fig. 4.6. No big differences between the models of R-card,

transmission line and Krowne’s formula can be observed because the signal strip is very thin

to make these models identical to each other. As the results of the parallel-plate waveguide

model in Fig. 2.6, the effective permittivity becomes large when the frequency goes down. This

is attributed to the highly lossy signal strips. Fig. 4.6 also shows there is no clear slow-wave

regions when considering the loss from signal strips.

The influence of the strip metallization thickness is shown in Fig. 4.7. Only the transmission

line model in (4.1) is adopted. The figure shows that, due to the series resistance, all nonzero-

thickness losses are larger than the zero-thickness case. And the thinner the strip is, the

higher the loss becomes. Compared with the effect of thin metallization ground in Fig. 2.5,

finite thickness signal strips do not enhance slow-wave mode but have remarkable influence on

the attenuation instead.

4.3 Conclusions

To study the metallization ground layer and signal strip in the multilayered structure,

different models for the thin-film conductor are compared and implemented to analyze a MIMI

structure and a MIS structure. The rigorous spectral domain approach is used. For the

models of thin metallization ground, numerical results show that the IBC is applicable when

the thickness t is larger than 2δ. At low frequencies and fixed thickness, the errors of the
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Figure 4.6: Dispersive characteristics for a MIS structure using different models for the signal
strip, silicon: 250µm, εr: 12, σ: 5 S/m, silicon dioxide: 1µm, εr: 4, w: 160µm, signal metal-
lization: 1µm, σ: 5.8×107 S/m: (a) effective relative permittivity, (b) attenuation constant.
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Figure 4.7: Dispersive characteristics for a MIS structure as functions of thickness using the
transmission line model for the signal strip (basic parameters as in Fig. 4.6): (a) effective
relative permittivity, (b) attenuation constant per unit length.
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R-card and TE/TM-mode sheet impedance are almost constant due to ignoring the normal

components of the electric field. The performance of the R-card at higher frequencies becomes

rather unacceptable, which suggests it is not appropriate to implement the R-card to model

the thin metal ground in multilayered microstrip transmission lines. For the models of signal

strips, the results show that the influences from finite thin signal strips are different with the

ones from the thin metal ground.
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CHAPTER 5. THE MODELING OF PLANAR TRANSMISSION LINES

IN MULTILAYERED STRUCTURE

To analyze a transmission line or interconnect, one task is to evaluate its complete properties

like the propagation constant, loss per unit length, field distribution, characteristic impedance,

and transient response, etc. In Chapter 3, the electric-field integral equations are formulated

based on the multilayered Green’s functions. The propagation constant of transmission lines

is solved by the MoM as the eigenvalue of system. With calculated complex propagation

constants, the current distribution on conductors and other transmission line properties can

be further computed.

This chapter exhibits a complete spectrum for analyzing the multilayered transmission

lines. Section 5.1 shows the way to extract the effective relative permittivity and loss per

unit length from the complex propagation constant. With these two parameters, the transient

responds can be evaluated in the time domain in Section 5.2. Furthermore, in Sections 5.3 and

5.4, formulations for the spatial distribution of EM fields are derived explicitly, from which the

characteristic impedance and RLCG circuit parameters can be extracted. Finally, Section 5.5

discusses the numerical issues such as finding complex roots and evaluating infinite integrals.

The convergence of the Galerkin’s method is also discussed.

5.1 Dispersion and Loss Analysis

As mentioned in Chapter 3, a lossy transmission line has a longitudinal propagation con-

stant with the factor ejωte−jγzz. Here γz is the eigenvalue or mode for the guided-wave system.

For a lossy system, after finding the complex γz(ω), we can write it into the real and imaginary
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parts as

jγz = α + jβ, (α, β > 0) (5.1)

where α is called the attenuation constant and β is the phase constant.1 Based on this defini-

tion, the corresponding real effective permittivity (εreff), loss/attenuation per unit length (α),

slow-wave factor (SWF), and normalized wavelength (λg/λ0) can be calculate as

εreff =
(

β

k0

)2

=
[
Re

(
γz

k0

)]2

(5.2)

α =−Im(γz) (Nepers/m)

=−8.686 Im(γz) (dB/m) (5.3)

SWF=
√

εreff (5.4)

λg

λ0
=

1√
εreff

(5.5)

where k2
0 = ω2ε0µ0. λg (= 2π/β) and λ0 (= 2π/k0) are the propagation wavelengths in

transmission line and free space, respectively. Because all parameters above are frequency

dependent, the dispersive characteristics of transmission lines are directly related with γz(ω).

5.2 Transient Analysis

With the dispersive propagation constant γz, we can get the transient response of pulse

signals by the Fourier transformation between the time domain and frequency domain. The

time harmonic field is assumed to vary in time as ejωt. First, the transient signals, e.g. the

Gaussian or rectangular pulses, are decomposed into different harmonic components in the

frequency domain. After γz is calculated at certain frequency point, which is also equivalent

to the system frequency response to the corresponding harmonic, distorted output waveforms

can be calculated. To obtain the output wave after traveling a distance L away along the z

direction, the inverse Fourier transform is applied as [80]

vout(t, z = L) =
1
2π

∫ ∞

−∞
Ṽin(ω, z = 0)ejωt−jγzLdω (5.6)

1Here α is not the spectral-domain variable as defined before.
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where Ṽin is the input waveform in frequency domain at z = 0,

Ṽin(ω, z = 0) =
∫ ∞

−∞
vin(t, z = 0)e−jωtdt (5.7)

and vin is the input signal in time domain. vout is the output signal after propagating along

the transmission line. In the numerical computation, above inverse Fourier transform can

be evaluated by the fast Fourier transform (FFT) algorithm efficiently. For the FFT, the

sampling interval in time domain ∆t decides the Nyquist critical frequency fN = 1/(2∆t),

while the sampling interval in frequency domain ∆f determines the duration of the total time

series T0 = 1/∆f . The most common choice of excitation waveform is a modulated Gaussian

pulse

vg(t) = cos(2πfct)e

�
− (t−tp)2

2τ2

�

(5.8)

where fc is the center frequency. tp is the pulse time offset, and τ is related to the pulse width.

In addition, to simulate transient signals in digital systems, the rectangular pulse is widely

used. A rectangular pulse is defined by the width of the pulse tw, its rise time tr, and fall time

tf as illustrated in Fig. 5.1.

 

Time t (s) 

Amp. 

t = 0 
tr tf 

tw 

Figure 5.1: Parameters of a rectangular pulse in time domain.

5.3 The Electric and Magnetic Field Distributions

After finding the propagation constant γz and certain current bases, all field components

can be evaluated systematically from the electric and magnetic potentials. The procedures are

introduced in the following steps.
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5.3.1 Coefficients of Current Basis Functions

By substituting the known γz into the matrix [K(γz)] of (3.65), the coefficients of am and

bn are found as the eigenvector that is corresponding to the zero eigenvalue. Then the currents

J̃z and J̃x are determined by (3.53). Then the coefficients Ã, B̃, C̃, and D̃ are found from

(3.35) as




Ã

C̃

B̃

D̃




=




e
−

tP
i=2

γi∆hi

e
−

tP
i=2

γi∆hi

e
−

N−1P
j=t+1

γj∆hj

e
−

N−1P
j=t+1

γj∆hj




[
V

]




0

jγz

M∑
m=1

amJ̃x,m

0
N∑

n=1
bnJ̃z,n




(5.9)

where γ2
i = α2 + γ2

z − ω2εiµi. Therefore, coefficients and corresponding potentials in the first

(i = 1) and last (i = N) layers are determined. Next, the Ai, Bi, Ci, and Di coefficients of

the ith layer can be obtained from the cascaded transfer matrices like (3.26) and (3.30) in the

following procedures



Ai

Bi

Ci

Di




=
[
Mi,i−1

] [
Mi−1,i−2

]
. . .




Ã

0

C̃

0




, 2 ≤ i ≤ t (5.10)




Ai

Bi

Ci

Di




=
[
M ′

i,i+1

] [
M ′

i+1,i+2

]
. . .




0

B̃

0

D̃




, t + 1 ≤ i ≤ N − 1. (5.11)

5.3.2 Potential Functions in Each Layer

With the Ai, Bi, Ci, and Di coefficients determined, according to (3.20) and (3.27), the

electric and magnetic potentials of the ith layer can be expressed as the general forms

Ψ̃e,i = Aie
γi(y−h¤) + Bie

−γi(y−h¤)

Ψ̃m,i = Cie
γi(y−h¤) + Die

−γi(y−h¤)
(5.12)
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where h¤ = hi−1 for 2 ≤ i ≤ t and h¤ = hi for t + 1 ≤ i ≤ N − 1. Two special cases need to

be considered: for the first layer, h¤ = h1; for the last layer, h¤ = hN − 1. The details can be

referred to Appendix B.

5.3.3 Field Components in the Spectral Domain

Derived from the equations of (3.9)-(3.12), the spectral-domain electric and magnetic field

components in the ith layer are given as follows

Ẽz,i = j
k2

i−γ2
z

γz

[
Aie

γi(y−h¤) + Bie
−γi(y−h¤)

]

Ẽx,i = −jα
[
Aie

γi(y−h¤) + Bie
−γi(y−h¤)

]
+ ωµiγi

γz

[
Cie

γi(y−h¤) −Die
−γi(y−h¤)

]

Ẽy,i = γi

[
Aie

γi(y−h¤) −Bie
−γi(y−h¤)

]
+ j ωµiα

γz

[
Cie

γi(y−h¤) + Die
−γi(y−h¤)

]
(5.13)

and

H̃z,i = j
k2

i−γ2
z

γz

[
Cie

γi(y−h¤) + Die
−γi(y−h¤)

]

H̃x,i = −jα
[
Cie

γi(y−h¤) + Die
−γi(y−h¤)

]− ωεiγi

γz

[
Aie

γi(y−h¤) −Bie
−γi(y−h¤)

]

H̃y,i = γi

[
Cie

γi(y−h¤) −Die
−γi(y−h¤)

]− j ωεiα
γz

[
Aie

γi(y−h¤) + Bie
−γi(y−h¤)

]
(5.14)

where all parameters follow the same definitions as before.

5.3.4 Field Components in the Spatial Domain

Finally, the corresponding spatial field distribution on the point (x0, y0, z0) can be evaluated

by the inverse Fourier transformation of (5.13) and (5.14)

E(x0, y0, z0)=
e−jγzz0

2π

∫ ∞

−∞
Ẽ(α, y0)e−jαx0dα (5.15)

H(x0, y0, z0)=
e−jγzz0

2π

∫ ∞

−∞
H̃(α, y0)e−jαx0dα (5.16)

where E and H are vector forms of the electric and magnetic fields, respectively.

5.4 The Characteristic Impedance

The characteristic impedances of microstrip lines can be estimated based on the field dis-

tribution over the whole cross section. Generally speaking, there are three definitions for the
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impedance: the power-current impedance (ZPI), the power-voltage impedance (ZPV ), and the

voltage-current impedance (ZV I) [48]. These three types of impedances are reviewed as follows.

5.4.1 Power-Current Definition

This definition is widely used in the literature with an expression as

ZPI =
2P

|Iz|2 (5.17)

where P is the total power flowing through the cross section of transmission line; Iz is the

total longitudinal current along the z axis. The power P is calculated by integrating the z

component of the complex Poynting vector 1
2E×H∗ over the whole xoy plane. In addition, the

spatial-domain integral for multilayered structures can be transferred to the spectral domain

according to the Plancherel’s theorem

P =
1
2

∫ ∞

0

∫ ∞

−∞
E×H∗ · ẑdxdy =

1
4π

∫ ∞

−∞

N∑

i=1

∫ hi

hi−1

(Ẽx,iH̃
∗
y,i − Ẽy,iH̃

∗
x,i)dydα (5.18)

where ∗ stands for the operator of complex conjugate. To fulfill the integral in the spectral

domain, field distributions in (5.13) and (5.14) are expressed by new defined coefficients as

follows

Ẽx,i=
[
−jαAi +

ωµiγi

γz
Ci

]
eγi(y−h¤) +

[
−jαBi − ωµiγi

γz
Di

]
e−γi(y−h¤)

≡Āx,ie
γi(y−h¤) + B̄x,ie

−γi(y−h¤) (5.19)

Ẽy,i=
[
γiAi + j

ωµiα

γz
Ci

]
eγi(y−h¤) +

[
−γBi + j

ωµiα

γz
Di

]
e−γi(y−h¤)

≡Āy,ie
γi(y−h¤) + B̄y,ie

−γi(y−h¤) (5.20)

H̃x,i=
[
−jαCi − ωεiγi

γz
Ai

]
eγi(y−h¤) +

[
−jαDi +

ωεiγi

γz
Bi

]
e−γi(y−h¤)

≡C̄x,ie
γi(y−h¤) + D̄x,ie

−γi(y−h¤) (5.21)

H̃y,i=
[
γiCi − j

ωεiα

γz
Ai

]
eγi(y−h¤) +

[
−γDi − j

ωεiα

γz
Bi

]
e−γi(y−h¤)

≡C̄y,ie
γi(y−h¤) + D̄y,ie

−γi(y−h¤) (5.22)
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where suffix i is the layer index. Therefore, above subregion-integral over y (5.18) becomes

∫ hi

hi−1

(
Ẽx,iH̃

∗
y,i − Ẽy,iH̃

∗
x,i

)
dy =

∫ hi

hi−1

(
Āx,iC̄

∗
y,i − Āy,iC̄

∗
x,i

)
e2Re[γi(y−h¤)]dy

+
∫ hi

hi−1

(
Āx,iD̄

∗
y,i − Āy,iD̄

∗
x,i

)
e2Im[γi(y−h¤)]dy

+
∫ hi

hi−1

(
B̄x,iC̄

∗
y,i − B̄y,iC̄

∗
x,i

)
e−2Im[γi(y−h¤)]dy

+
∫ hi

hi−1

(
B̄x,iD̄

∗
y,i − B̄y,iD̄

∗
x,i

)
e−2Re[γi(y−h¤)]dy. (5.23)

Disregarding the complex coefficients, these subregion-integrals of exponential functions yield

the analytical results

∫ hi

hi−1

e±2Re[γi(y−h¤)]dy =





e±2Re[γi(hi−hi−1)]−1
±2Re(γi)

, lower: h¤ = hi−1, Re(γi) 6= 0

1−e∓2Re[γi(hi−hi−1)]

±2Re(γi)
, upper: h¤ = hi, Re(γi) 6= 0

hi − hi−1, Re(γi) = 0

(5.24)

∫ hi

hi−1

e±2Im[γi(y−h¤)]dy =





e±2Im[γi(hi−hi−1)]−1
±2Im(γi)

, lower: h¤ = hi−1, Im(γi) 6= 0

1−e∓2Im[γi(hi−hi−1)]

±2Im(γi)
, upper: h¤ = hi, Im(γi) 6= 0

hi − hi−1, Im(γi) = 0

(5.25)

where the upper and lower regions are defined by their position with respect to the location

of signal strip. Specifically because h¤ = h1 and h¤ = hN−1, it is equivalent to treat the first

layer as one case of upper region, while the last layer as one case of lower region. If the first or

last layer has open BCs, the integral has much simpler analytical form. For example, for the

last layer with open BCs, we have AN = CN = 0, and the power integral has a result as

∫ ∞

hN−1

(
Ẽx,NH̃∗

y,N − Ẽy,NH̃∗
x,N

)
dy

= (B̄x,ND̄∗
y,N − B̄y,ND̄∗

x,N )
∫ ∞

hN−1

e−2Re[γN (y−hN−1)]dy

=
B̄x,ND̄∗

y,N − B̄y,ND̄∗
x,N

2Re(γN )
(5.26)
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where Re(γN ) 6= 0. Similarly, for the first layer, the open BC yields

∫ h1

−∞

(
Ẽx,1H̃

∗
y,1 − Ẽy,1H̃

∗
x,1

)
dy

= (Āx,1C̄
∗
y,1 − Āy,1C̄

∗
x,1)

∫ h1

−∞
e2Re[γ1(y−h1)]dy =

Āx,1C̄
∗
y,1 − Āy,1C̄

∗
x,1

2Re(γ1)
(5.27)

where Re(γ1) 6= 0. The total current Iz is calculated from the integral of the current density

Jz over the signal strip shown in Fig. 3.1

Iz =
∫ w/2

−w/2
Jz(x)dx. (5.28)

Then, the characteristic impedance of ZPI is calculated directly from the definition.

5.4.2 Voltage-Current Definition

The voltage V of a multilayered single microstrip line can be calculated by integrating the

Ey components along the y axis, from the center of signal strip down to the PEC boundary

h0 as shown in Fig. 3.1. Its integral form is written, according to (5.20), as

V = − 1
2π

∫ ∞

−∞

t∑

i=1

∫ hi

hi−1

Ẽy,idydα (5.29)

where

∫ hi

hi−1

Ẽy,idy=Āy,i

∫ hi

hi−1

eγi(y−h¤)dy + B̄y,i

∫ hi

hi−1

e−γi(y−h¤)dy

=
Āy,i

γi

[
eγi(hi−hi−1) − 1

]
− B̄y,i

γi

[
e−γi(hi−hi−1) − 1

]
,

h¤ = hi−1, i > 1 (5.30)

and

∫ h1

h0

Ẽy,1dy=Āy,1

∫ h1

h0

eγ1(y−h1)dy + B̄y,1

∫ h1

h0

e−γ1(y−h1)dy

=
Āy,1

γ1

[
1− e−γ1h1

]
− B̄y,1

γ1

[
1− eγ1h1

]
, h¤ = h1, i = 1 (5.31)

when x0 = 0 and z0 = 0. Then the impedance defined by voltage and current is expressed as

ZV I =
V

Iz
. (5.32)
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5.4.3 Power-Voltage Definition

With the power and voltage calculated, the characteristic impedance has the following form

ZPV =
|V |2
2P ∗ . (5.33)

However, there is no unique definition for the voltage, especially in the multilayered-multiconductor

systems. So the ambiguousness of voltage calculation can cause deviations between the impedances

using different definitions [48].

5.5 Numerical Issues

In this section, problems related to the numerical analysis are discussed. The accuracy of

the final results strongly depends on the numerical stability and convergence. Thus, efficient

and accurate algorithms are highly critical in the numerical simulations.

The existence of metallization layers brings numerical difficulties to evaluate the Green’s

function when using the original transfer matrix method [22]. Because the high conductivity

makes ε̇i a large negative imaginary number, the propagation constant γ2
i = α2 + γ2

z − ω2ε̇iµi

inside the metal may become rather large when the arguments α and ω increase. The origi-

nal formulation in [22] chose the hyperbolic sine and cosine functions inside transfer matrices.

However, both sinhx and coshx increase exponentially with the variable x, which would gener-

ate large errors because of the loss of significant digits in floating-point arithmetic. Moreover,

for γi with a large positive real part, the hyperbolic sine and cosine functions become identical

numerically, which makes the transfer matrix become highly singular to operate calculation.

Another difficulty is the overflow problem that can halt the program. When γi increases,

the exponential factor eγi∆hi may exceed the largest number defined in floating-point system.

Particularly, for the IEEE standard double precision, the data is in the approximate ranges of

−1.7977× 10308 < negative number < −2.2251× 10−308

+2.2251× 10−308 < positive number < +1.7977× 10+308.

Roughly, the real part of γi∆hi cannot be larger than about 709. Otherwise the overflow

occurs. One solution is to redefine the data structure and arithmetic operations for complex
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numbers by writing large numbers into two parts as mantissa and exponent. This can be

accomplished by the overloading operations in Fortran90 or C++. However, the consequent

program slowdown becomes inevitable.

This dissertation proposes a numerically friendly formulation for the transfer matrices.

The normalization-based procedure is applied by using the exponential functions as the basic

solution set. The large coefficients are extracted and absorbed by the unknown coefficients in

(3.32)-(3.35) to avoid large entries in matrices.

How to find the roots (eigenvalues) of the characteristic equation det [K(γz)] = 0 belongs

to non-linear eigenvalue problems. When γz is complex, the search region is on the complex

plane that needs special considerations. This research uses the Muller method, as a global root

finding method [81]. The deflation technique can be applied for multiple roots finding when

solving the high-order modes. Some references, such as the bordering deletion and substitution

method, and the continuation method, can be applied too.

Moreover, the accuracy of final results strongly depends on the convergence of the infi-

nite integral in the spectral domain. Efficient numerical integration algorithms are critical.

The Green’s functions and integral equations for multilayered structures are normally the

Sommerfeld-typed integrals, whose high-oscillation and slow-convergence properties make this

type of integral difficult to evaluate. Normally, an integration path is chosen slightly above the

real axis to avoid the pole singularity. In the lossy transmission lines, the integral over the real

axis is much easier than the lossless case because the poles are located off the real axis due to

the loss. Some procedures, such as the method of average [82] and the extrapolation method

[83], have been developed to handle the oscillation features of the integrand and overcome the

slow convergence.

For the Galerkin’s method, the singularity of the moment matrix may become severe when

using more terms of basis functions to expand unknown currents. The reason is that the

contribution from the high-order terms becomes negligible, which makes relevant matrix rows

become linearly dependent. Because of this linear dependence, the Gaussian elimination and

LU decomposition algorithms are not accurate anymore for the matrix inverse and determinant
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calculation. In this case, the singular value decomposition algorithm should be implemented

to calculate the inverse matrix, determinant, and eigenvectors.

In addition, Table 5.1 shows one example of the convergence test with different numbers

of current bases. The Chebyshev polynomials in (3.58) and (3.59) are used to calculate the

effective permittivity of a one-layered open microstrip line [84]. The dielectric has a height of

1.27 mm and a relative permittivity of 9.7. The width of signal strip is 1.219 mm. The effective

permittivity is calculated at 1 GHz using the SDA. The results using both Jz and Jx currents

and using Jz only are compared with the reference, respectively. A good agreement and self

convergence are shown from the table.

Table 5.1: Convergence Test of εreff With Different Terms of Basis Functions

Jx and Jz Jz only
Mx ×Mz εreff Mz εreff

8×8 6.51902559926726 8 6.51980828497660
6×6 6.51902559785295 6 6.51980828426080
4×4 6.51902559665970 4 6.51980828376461
2×2 6.51902563911439 2 6.51980808456485
1×1 6.51953647475041 1 6.51809326432949

The result in [84] 6.51941 The result in [84] 6.51914
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CHAPTER 6. NUMERICAL STUDY OF THE EFFECTS FROM THE

FINITE THIN METALLIZATION

Previous chapters discuss the SDA techniques in studying the propagation characteristics

of multilayered planar transmission lines. In this chapter, all these techniques are implemented

into the real application. Corresponding transmission line properties are evaluated numerically

and compared with the reference data. The influence of finite thin imperfect conductors over

a broad frequency range is the central topics. Based on numerical results, empirical criteria

and rules are concluded to help the design of interconnects and transmission lines.

The MIMS and MIMI structures are evaluated in Section 6.1. The slow-wave effects in-

duced by the thin metallization ground are examined in Section 6.2. The final conclusions are

presented in Section 6.3.

6.1 Case Study

In this section, the MIMS and MIMI structures are mainly studied. Fig. 6.1 shows the

configuration of two multilayered open transmission lines with thin-film metallization. All

layers are assumed to be uniform and infinite in lateral and longitudinal directions. w is the

signal-strip width, while t and σc are the metal thickness and conductivity. The following

subsections are arranged to investigate these two transmission lines separately. The effects

from the thin-film metal ground are the main focus in this section.

6.1.1 Metal-Insulator-Metal-Semiconductor Structures

The MIMS structure is similar to the TFMSL structure [85]. The signal strip is assumed

to be a PEC, while the ground layer is modeled by a complex permittivity as shown in (2.1).
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First, to validate the numerical program, one MIS structure in [47] is considered. Fig. 6.2

shows the normalized guiding wavelength and attenuation per unit length as functions of

frequency. Different conductivities of silicon substrates are considered. The reference data are

marked with dot, cross, and rectangular markers. Our results show a good agreement. Fig. 6.2

exhibits that the slow-wave phenomenon is dominant as the frequency decreases [45].

 

PEC Ground PEC Ground 

Si 

w w 

t, σc t, σc 

     (a)                                                 (b)                                     

Air Air 

2 
1 

3 
2 
1 

3 

Figure 6.1: Multilayered planar transmission lines with the embedded thin-film metallization:
(a) MIMS, (b) MIMI.

For a 3-layered MIMS structure, the frequency-dependant curves of SWF (=
√

εeff ) and

attenuation versus thickness t are plotted in Fig. 6.3. The MIMS structure is similar with the

MIS case in Fig. 6.2 except for a copper metallization layer. The silicon substrate has a height

of 250µm with εr = 12 and σ = 5 S/m. The silicon dioxide thickness is 1µm with εr = 4.

Between them is the thin copper ground layer with σc as 5.8× 107 S/m. w is 160µm.

There are several boundary curves in Fig. 6.3. When t is zero, the microstrip degrades to a

conventional MIS structure. The curves agree well with the results (circles) of Cano et al. [48].

When t becomes a PEC, the results agree with the quasi-TEM formula [86]. When t becomes

infinite (IBC model), the whole metallization layer becomes opaque and attenuates all fields.

Other curves representing nonzero-t values converge sequentially to this infinite-t curve. This

shows that, at very high frequencies, the skin depth is much smaller than the metal thickness

to make the thin-film metal work as a very thick conductor. And EM fields are mainly confined

within the silicon dioxide layer, which is also called the skin-effect mode. This mode follows

the quasi-TEM field theory so that all the nonzero-t curves exhibit agreement with the PEC

model at high frequencies. At low frequencies, similar large effective permittivities caused

by slow-wave mode were also observed in [87]. However, both PEC and IBC models fail to

describe such slow-wave phenomenon. It is evident that this thin-film ground can isolate the
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Figure 6.2: Propagation characteristics of a MIS structure versus frequency and substrate
conductivity, silicon: 250µm, εr: 12, silicon dioxide: 1µm, εr: 4, w: 160 µm: (a) normalized
guiding wavelength, (b) attenuation constant (dots: results from [47]).
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lossy silicon substrate.

Fig. 6.3(b) shows that the attenuation is proportional to the square root of frequency in

high-frequency range. The reason is the model only considers the loss from the thin-film ground

instead of the signal strip. Thus, at high frequencies where the skin effect is dominant, the

model attenuation is mainly determined by the real part of the surface impedance from the

metallization layer. At low frequencies, the metal ground thickness is sufficiently smaller than

the skin depth and the propagation mode tends to be quasi-static. The whole thin metallization

layer and substrate can be modeled as shunt conductances that cause the attenuation to

increase with the square of frequency.

Moreover, in Fig. 6.3(b), the low frequency attenuation shows a minimal respect to the film

thickness t. The attenuation at t equals 0.05µm is found to be less than the zero-t case. One

physical explanation is that the thin metal ground isolates the lossy substrate and diminishes

the total loss by blocking the electric field, especially the fringing field, from reaching the lossy

substrate. But when t increases to some extent, the ohmic loss increases from the metallization

layer overcomes the loss reduction from the ground-shielding effect. Then the total attenuation

becomes higher again. So an optimal thickness may exist to attain a minimum attenuation.

Similar optimal thickness was also found in [64].

The contour plots of the SWF and attenuation constant as functions of frequency and

thickness are shown in Fig. 6.4. The dash lines in figures stand for the different skin depths

with factors from 1 to 4 separately. With large t, say 100µm, nearly all lines become parallel

to each other and unchangeable with frequency. This behavior reveals the convergence to the

infinite-t case. Actually, when the thickness is between 2δ and 3δ, almost all contour lines

converge to the parallel lines. In other words, the criteria of the thick-enough metallization

is to be at least thicker than 2δ. Moreover, another point to note is that when thickness t

reaches some critical points around 3 nm, the attenuation constants are at a minimum. This

minimal-loss phenomenon is similar to the ones in [44], [63], where the minimum attenuation

is related to the critical substrate conductivity instead.

The relevant field distributions are plotted in Figs. 6.5. Three points at 10 MHz, 1 GHz, and
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Figure 6.3: Propagation characteristics of a MIMS structure as functions of frequency and
metallization thickness, semiconductor: εr = 12, σ = 5 S/m, 250µm, metallization: σc =
5.8 × 107 S/m, insulator: εr = 4, 1µm, w = 160µm: (a) slow wave factor (

√
εeff ), (b)

attenuation per unit length.
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Figure 6.4: Contour plot for electrical characteristics of the MIMS structure (Other data as in
Fig. 6.3): (a) slow wave factor, (b) attenuation log10(α).
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(a) (b)

(c) (d)

(e) (f)

Figure 6.5: Total field amplitude distribution of the MIMS structure as Fig. 6.3 with t = 1 µm
(left column: total electric fields, right column: total magnetic fields, both in log10 scale): (a,
b) 10 MHz slow-wave mode, (c, d) 1 GHz transition region, (e, f) 30 GHz skin-effect mode.
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30 GHz on the t = 1µm curve are chosen separately from Fig. 6.3(a). For the slow-wave mode

in Figs. 6.5(a) and 6.5(b), at 10 MHz, the magnetic field penetrates into the silicon substrate,

whereas the electric field is shielded. Such spatial discrepancy of electric and magnetic fields

slows down the wave propagation velocity. On the contrary, in Figs. 6.5(e) and 6.5(f), the

skin-effect mode shows that both electric and magnetic fields are strongly coupled, shielded by

the thin metal ground, and confined within the SiO2 layer where the velocity is high. In the

transition region as Fig. 6.5(c) and 6.5(d), the magnetic field shows modest penetration.

Fig. 6.6 plots the characteristic impedances of the MIMS versus frequency and metallization

thicknesses. When t becomes zero, the real part of Z0 increases rapidly with frequency due

to the decreased equivalent shunt capacitance during the transition from the slow-wave mode

to the dielectric quasi-TEM mode. The imaginary part shows the total reactive power is

influenced mainly by the shunt capacitance. As t becomes nonzero, however, the real parts of Z0

decrease and converge to the PEC limit at high frequencies. This is attributed to the transition

from the slow-wave mode to the skin-effect mode where the quasi-TEM approximation still

holds well since the line dimensions remind small compared to the wavelength. In the skin-

effect mode, the real impedance is reduced by the metallization layer because this layer also

diminishes the magnetic fields in silicon substrate to reduce the equivalent series inductance.

The imaginary parts show that the reactive power is influenced by the series inductance. Thus

the characteristic impedance has a marked dependence on the metallization thickness of the

ground plane.

Moreover, another practical MIMS structure is studied to compare the three definitions of

impedance. The silicon dioxide εr is 4 and its thickness is 4µm. The width of strip w is 10 µm.

The bulk silicon substrate is 500µm thick with εr = 12 and conductivity σ = 10 S/m. The

metallization layer has a conductivity σc = 5.88× 107 S/m.

In Fig. 6.7, the relation between characteristic impedance and frequency are plotted under

different impedance definitions and different thickness t of the ground substrate. Compared

with the reference’s results [88], it shows the power-current defined impedance is the most

accurate results among all three impedances. The difference is due to the voltage definition as
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a path integral is not unique and cannot guarantee the fundamental relation between power,

current, and voltage. When the thickness t becomes zero, the structure becomes a pure MIS

microstrip. When the frequency goes up beyond about 2GHz, the |Z0| increases rapidly. This

is due to the mode transition from the slow-wave mode to the quasi-TEM mode. However,

when the thickness t is nonzero, the impedances decrease when frequencies increase, and finally

converge to the limit where the thin metallization layer works as a PEC. This behavior is due

to the reason that the operation mode transits from the slow-wave to skin-effect mode and the

magnetic fields in silicon are diminished to reduce the series inductance consequently.

Figs. 6.8(a) and 6.8(b) demonstrate the extracted resistance and inductance vary with the

frequency. The thin metallization layer leads to larger resistance. At low frequency region, for

all cases, the resistances are proportional to the square of the frequency. This is due to the

ohmic loss caused by electric currents flowing through the whole metallization layer and silicon

substrate. At high frequencies, the resistances with thin metallization layers are proportional

to the square root of frequency. This is due to the fact that the current of the skin-effect mode

flows mainly through a region that is proportional to the skin depth. For the inductance, when

t = 0 and frequency changes, the magnetic fields still distribute over the whole cross section

as quasi-TEM mode, which keeps the series inductance almost unchanged. However, the thin

metallization layer prevents magnetic fields from coupling into the substrate. As a result,

the equivalent inductance decreases remarkably when the operation mode transfers from the

slow-wave to skin-effect modes.

The equivalent shunt capacitance and conductance are illustrated in Figs. 6.9(a) and 6.9(b).

With the thin metallization layer, for both slow-wave and skin-effect modes, almost all elec-

tric fields are constrained in the dioxide layer, so the capacitance from the silicon dioxide is

dominant. And the capacitance remains almost flat with frequency. Without the metallization

layer, the capacitance of silicon dioxide is connected in series with the equivalent capacitance

of silicon substrate, so the total capacitance becomes smaller. This is shown explicitly in

Fig. 6.9(a). In Fig. 6.9(b), the shunt conductance with the metallization layer is almost zero

because the thin metallization layer tends to work as a PEC and screen the effect of silicon
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Figure 6.8: Frequency behavior of (a) series resistance and (b) inductance per unit line for the
MIMS structure in Fig. 6.7 (circle dots: results from [88]).
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substrate.

6.1.2 Metal-Insulator-Metal-Insulator Structures

As demonstrated before, the slow-wave is a comprehensive effect due to the influence coming

from the lower lossy silicon substrate and thin metallization layer. To identify the influence of

this metallization layer only, a thin metal layer is inserted into a lossless microstrip line as shown

in Fig. 6.1(b). This metal layer is made of copper. The lossless dielectric material (εr = 10.2)

is divided into two parts as 20µm and 80µm. The width of the metal strip line is 200µm.

The corresponding dispersion characteristics are shown in Figs. 6.10 and 6.11. The similar

convergence patterns reoccur and accord with the previous discussions. This illustrates that

the thin metallization layer can introduce the slow wave phenomenon in a lossless substrate. In

addition, the noticeable difference between the PEC and real metal shows that the slow wave

exists even when the metallization thickness is only small fraction of the skin depth, which is

a phenomenon that the PEC cannot describe appropriately. Therefore, the thin metallization

layer has a great impact on the dispersion characteristics of microstrip lines.

In Fig. 6.12, the real and imaginary parts of the impedance are also plotted. when t equals

to zero, our result agrees with the Pramanick’s [86]. The imaginary parts of the impedance is

relatively small compared with the real parts. At the same time, when the metallization layer

becomes thicker, the impedance converges to the PEC curve faster when frequency increase.

This is because the reduction of the skin depth with increasing frequencies makes the thin

metallization layer act as a very thick good conductor.

Fig. 6.13 plots the field distributions of the MIMI structure in different modes. The similar

EM penetration phenomena like Fig. 6.5 appear again. It is also clear the thin metallization

ground layer cannot shield the magnetic fields at low frequencies.

Moreover, a practical 50-Ω MIMI line is studied, where the carrier substrate (alumina) and

thin dielectric layer (Hibridas photoimageable dielectric) are both lossless [89]. The alumina

substrate is 635µm thick with a relative permittivity εr = 9.8. The Hibridas dielectric layer

has a thickness of 18µm and its relative permittivity εr is 8. The signal strip w is 22.78µm.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.13: Total field amplitude distribution of the MIMI structure in Fig. 6.10 with t = 1 µm
(left column: total electric fields, right column: total magnetic fields, both in log10 scale): (a,
b) 1 MHz slow-wave mode, (c, d) 100 MHz transition region, (e, f) 10 GHz skin-effect mode.
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The metallization has a conductivity of 5.8× 107 S/m. t is the metal layer thickness. Fig. 6.14

shows the dispersive curves of the effective permittivity and attenuation. Similar slow-wave

modes and stepwise convergence under different metallization thicknesses reoccur and accord

with pervious explanation. Fig. 6.15 plots the corresponding impedances that reveal the similar

behavior as Fig. 6.12. Therefore, the thickness factor of metallization layer is significant for the

dispersion and slow-wave effect. Its existence introduces the lossy mechanism into the whole

system.

6.2 Slow-Wave Effects in Transient Analysis

The transient characterization of electric interconnect and metallization structures has be-

come an essential issue in the design of high-speed digital ICs. Unlike conventional lossless

microstrip transmission lines, in which the higher harmonics (compared to the inflection fre-

quency) travel at a lower velocity than the lower ones, typical IC interconnects are fabricated

on lossy silicon substrates and have three signal propagation modes: the slow-wave mode, the

skin-effect mode, and the quasi-TEM mode [45]. For low frequency harmonics, the slow-wave

mode becomes dominant. In this section, the thickness effect of the thin metallization layer on

the transient signal propagation is studied by the SDA and FFT technique. The TFMSL-typed

interconnection, as shown in 6.1(a), is used to show that the transient pulse propagation is

influenced by the presence of the thin-film metal ground layer and lossy silicon substrate. The

waveform distortion under different metallization thicknesses is simulated. It shows such thin-

film metallization can shield the lossy substrates and enhance slow-wave mode propagation.

In order to illustrate the impact of metallization thickness on the attenuation and distortion

of the transient signal, a Gaussian pulse defined as (5.9) and a rectangular pulse are input into

a 20 mm MIMS interconnection line in Fig. 6.3. Their transient responses are plotted in

Figs. 6.16 and 6.17. The undistorted input pulses are included for comparison. The figures

depict the signal suffers severe attenuation in the conventional MIS structure (t = 0), which

is due to its large attenuation constant for high-frequency harmonics. With the embedded
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metallization ground plane, the overall attenuation is reduced. This indicates the advantage

of the TFMSL as that the ground metallization screens the lossy substrate effect [85]. In

addition, the latency in the communication through the interconnection is shown. When t

equals 0.01µm, the transmission system has a slow-wave mode up to about 1GHz, so the

corresponding pulse delays are the maximal among all the curves. For large t, e.g. 10µm,

the metallization layer tends to work as a metal ground and makes the interconnect become a

single-layer SiO2 microstrip line to reduce the time delay and overall attenuation.

Table 6.1: Effective Transmission Parameters from the Transient Analysis

Thickness t Velocity vg Attenuation α

0µm 7.442× 107 m/s 0.9309 dB/mm
0.01µm 2.146× 107 m/s 0.7860 dB/mm
0.1µm 4.707× 107 m/s 0.9449 dB/mm
1µm 1.280× 108 m/s 0.2936 dB/mm
10µm 1.217× 108 m/s 0.1990 dB/mm

Table 6.1 shows the estimated group velocity and overall attenuation constant for structures

under different metallization thicknesses. These parameters are calculated by finding the peak

values and delays of distorted Gaussian pulses in Fig. 6.16 and comparing them with the original

input signal. Table 6.1 points out, when t equals 0.1µm and 0.01µm, the interconnect has lower

group velocities than the conventional MIS structure. In addition, with thick metallization,

the signal transmission in the interconnect is speeded up by about factor 2 and has much less

transmission loss.

Fig. 6.18 illustrates the transient response of a Gaussian pulse modulated in three different

work regions: the slow-wave region (A), the transition region (B), and skin-effect region (C).

Different center frequencies and frequency bandwidths are selected to fit the Gaussian pulse

exactly within these three regions. Using the numerical data in Fig. 6.18(c)-(d), the values

for the effective group velocity and attenuation are estimated. For slow-wave region (A), the

velocity is about 1.309×107 m/s with a small attenuation 7.541×10−8 dB/mm. The waveform

distortion is almost undetectable. In transition region (B), the velocity is 4.366× 107 m/s but

with a higher attenuation as 0.07708 dB/mm. For the skin-effect region (C), the highest speed
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of 1.326 × 108 m/s is achieved but also with the largest attenuation 0.4613 dB/mm, which

causes severe amplitude distortion.

6.3 Conclusions

The effects of a thin-film metal ground have been studied by the SDA. Two transmission

line structures, the MIMS and MIMI, are analyzed. The numerical results show that the EM

fields can penetrate the metallization and couple with layers underneath. The corresponding

EM leakage, especially of the magnetic field, can excite or even enhance the slow-wave mode

into higher frequency regions. The propagation characteristics are influenced significantly by

the backside thin-film metallization if its relative thickness is comparable to the skin depth. If

being about 2δ to 3δ thick, the metallization ground is thick enough to behave as an infinitely-

thick metal substrate. In addition, an optimal thickness is observed to obtain the minimal

attenuation.

The thin metallization ground layer influences the characteristic impedances. From the

analysis of the extracted RLCG parameters, it shows that the thin metallization layers have

significant impacts on the series resistance and inductance. On the contrary, this layer works as

ground to shield the influence from the bulk silicon to make shunt capacitance and conductance

unchanged with frequency.

At last, the numerical results indicate the thickness factor of the thin metal ground has a

great impact on the transient response. With very small thickness, this metallization layer can

actually slow down the pulse propagation in interconnects. In conclusion, all these effects are

of importance in the performance analysis of IC interconnects and packaging.
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CHAPTER 7. CONCLUSIONS AND FUTURE WORK

This research investigates the accurate modeling of semiconductor-based transmission lines

with thin metallization components. The SDA is used to study the propagation characteristics.

The spectral-domain Green’s functions for the lossy multilayered structure are derived by the

transfer matrix method and SDIA. In this research, a new formulation for the transfer matrix

method is proposed to solve the potential overflow problems caused by metallization layers. The

Green’s functions yield complex integral equations for the unknown currents on conductors.

These equations are solved by the MoM and Muller method to get the complex propagation

constant and current distribution.

With the calculated complex propagation constant and current distribution, the electri-

cal properties of multilayered transmission lines are investigated. This dissertation presents

a complete picture to study the EM properties of transmission lines, such as the effective

permittivity, propagation attenuation, transient response, spatial field distribution, character-

istic impedance, and extracted RLCG parameters of the circuit model. Computer codes are

developed to study the effects from the thin metallization components.

Besides the SDA, the parallel-plate waveguide model is also implemented to study the im-

perfect metallization effects. The fundamental TM mode is investigated by the exact eigenvalue

equations and the low-frequency approximations. The first- and second-order low-frequency

approximations of the propagation constant are derived. These approximations are compared

with the exact solutions to access the validity. Moreover, corresponding equivalent circuits are

modeled based on the approximate formulation.

All numerical results show that the EM properties of transmission lines can be influenced

significantly by the backside thin-film metallization layer. This influence also depends on the



www.manaraa.com

91

nature and configuration of the metallization like the thickness, position, and metal conductiv-

ity. The field distribution shows that the EM fields, especially the magnetic field, can penetrate

the metallization if its relative thickness is comparable to the skin depth. This EM leakage can

excite or even enhance the slow-wave mode into higher frequency regions. The metallization

layer can shield the influence from the lossy semiconductor substrate only if being about 2δ to

3δ thick. In addition, the wide-used models such as the PEC, IBC, and resistance sheet are not

appropriate to describe such properties. More rigorous EM modeling should be implemented

for accurate interconnect design and analysis.

Based on the concept and techniques of current work, some possible areas can be developed

for future study as follows.

The high-order modes for the 2-dimensional multilayered structure are important to un-

derstand the overall propagation properties, which also needs robust complex root-finding

algorithms.

For current on-chip interconnect such as high-speed digital ICs, the width-to-thickness ratio

is very close to one. For this structure, effects from the vertical current distribution and from

current proximity on vertical sidewalls could become too significant to be neglected. Thus, the

volume and surface integral equations should be used for accurate modeling.

The 3-dimensional multilayered structures, such as the discontinuities, vias, patterned or

perforated ground, also have more practical significance to investigate. The general integral-

equation-based approaches are more appropriate for this problem. The spectral-domain mul-

tilayered Green’s function can be combined with other approaches like the spatial domain

approach and mode matching method to achieve more modeling flexibility.

For the general equation-based approach, accurate evaluation of the Sommerfeld integral

is always a critical task. In addition, the geometric complexity of 3-dimensional interconnect

structures could bring significant computational loads to the MoM. The fast computation

techniques like the fast multipole method and adaptive integral method can be applied to

speedup the computation.
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APPENDIX A. The Field Distributions and Characteristic Impedance of

Parallel-Plate Waveguides

This appendix introduces the formulation and procedure to evaluate the field components

and characteristic impedance for the parallel-plate waveguide model. To make an explicit

comparison and verification with the reference, the definition and notation are adopted as

same as the ones in Williams’ paper [49]. For the multilayered structure in Fig. 2.1, the TMz

mode can be defined as the Az component from the vector magnetic potential A.

Ex=−j
1

ωεµ

∂2Az

∂x∂z
(A.1)

Ey=−j
1

ωεµ

∂2Az

∂y∂z
(A.2)

Ez=−j
1

ωεµ

(
∂2

∂z2
+ ω2εµ

)
Az (A.3)

and

Hx=
1
µ

∂Az

∂y
(A.4)

Hy=− 1
µ

∂Az

∂x
(A.5)

Hz=0 (A.6)

where Az satisfies the wave equation as

∇2Az + ω2εµAz = 0. (A.7)

By assuming the wave propagates in the z direction with a ejωte−γz factor,1 above wave

equation becomes

∂2Az

∂y2
+ k2Az = 0, k2 = γ2 + ω2εµ (A.8)

1γ is equivalent to jγz that is used in Chapters 2 and 3.
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where k is actually the propagation constant on y direction. This equation has the basic

solution set as
{

sin(ky), cos(ky), or e±jky
}
. Moreover, the electric field and magnetic field

have the following relationship

Ey=− γ

k2

∂Ez

∂y
= − γ

jωε
Hx (A.9)

Hx=
jωε

k2
Ez (A.10)

while Ex = Hy = Hz = 0 for TMz modes.

Using the basic solution set, the fields inside a N -layered parallel plate waveguide can be

written as [49]

Ez,N =





cos [kN (hN − y)] (PMC)

sin [kN (hN − y)] (PEC)
(hN−1 ≤ y ≤ hN ) (A.11)

Ez,i = Bi sin [ki(hi − y)] + Ci cos [ki(hi − y)] (hi−1 ≤ y ≤ hi) (A.12)

Ez,1 = D sin(k1y) (PEC, h0 ≤ y ≤ h1) (A.13)

and

Hx,N =





jωεN
kN

sin [kN (hN − y)] (PMC)

− jωεN
kN

cos [kN (hN − y)] (PEC)
(hN−1 ≤ y ≤ hN ) (A.14)

Hx,i =
jωεi

ki

{
−Bi cos [ki(hi − y)] + Ci sin [ki(hi − y)]

}
(hi−1 ≤ y ≤ hi) (A.15)

Hx,1 =
jωε1

k1
D cos(k1y) (PEC, h0 ≤ y ≤ h1) (A.16)

Ey,N =





− γ
kN

sin [kN (hN − y)] (PMC)

γ
kN

cos [kN (hN − y)] (PEC)
(hN−1 ≤ y ≤ hN ) (A.17)

Ey,i =
γ

ki

{
Bi cos [ki(hi − y)]− Ci sin [ki(hi − y)]

}
(hi−1 ≤ y ≤ hi) (A.18)

Ey,1 = − γ

k1
D cos(k1y) (PEC, h0 ≤ y ≤ h1) (A.19)

where the maximum amplitude of Ez is normalized to unite in Nth layer. i is the layer

index. Bi, Ci, and D are unknown coefficients for fields. εi and µi are the permittivity and

permeability of ith layer, respectively. The continuity of Ez and Hx on interfaces gives the
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solutions as

CN−1=





cos(kN∆hN ) (PMC)

sin(kN∆hN ) (PEC)
(A.20)

BN−1=





−kN−1

kN

εN
εN−1

sin(kN∆hN ) (PMC)

kN−1

kN

εN
εN−1

cos(kN∆hN ) (PEC)
(A.21)

Ci=Bi+1 sin(ki+1∆hi+1) + Ci+1 cos(ki+1∆hi+1) (A.22)

Bi=− ki

ki+1

εi+1

εi
[−Bi+1 cos(ki+1∆hi+1) + Ci+1 sin(ki+1∆hi+1)] (A.23)

D=
B2 sin(k2∆h2) + C2 cos(k2∆h2)

sin(k1∆h1)
, or

=
k1

k2

ε2

ε1

C2 sin(k2∆h2)−B2 cos(k2∆h2)
cos(k1∆h1)

(A.24)

where ∆hi = hi − hi−1 and 2 ≤ i ≤ N − 1.

The characteristic impedance can also be estimated in the same way used in Chapter 5.

The model voltage can be defined as following integral

V =−
∫ h1

h0

Eydy −
N−1∑

i=2

∫ hi

hi−1

Eydy −
∫ hN

hN−1

Eydy

=
γ

k2
1

D sin (k1∆h1) +
N−1∑

i=2

γ

k2
i

[Bi sin (ki∆hi) + Ci − Ci cos (ki∆hi)]

+





γ
k2

N
[1− cos(kN∆hN )] , (PMC)

− γ
k2

N
sin(kN∆hN ), (PEC)

(A.25)

The power per unit width is calculated by the integral of the Poynting vector over y as

P=−
∫ h1

h0

EyH
∗
xdy −

N−1∑

i=2

∫ hi

hi−1

EyH
∗
xdy −

∫ hN

hN−1

EyH
∗
xdy

≡I1 +
N−1∑

i=2

Ii + IN (A.26)
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where

I1=−jωγε∗1|D|2
4|k1|2

{
sin [2Re(k1)∆h1]

Re(k1)
+

sin [2Im(k1)∆h1]
Im(k1)

}

Ii=−jωγε∗i
4|ki|2

{
|B|2 sin [2Re(ki)∆hi]

Re(ki)
+ |B|2 sin [2Im(ki)∆hi]

Im(ki)

−2Re(BC∗)
1− cos [2Re(ki)∆hi]

Re(ki)
+ 2Im(BC∗)

1− cos [2Im(ki)∆hi]
Im(ki)

−|C|2 sin [2Re(ki)∆hi]
Re(ki)

+ |C|2 sin [2Im(ki)∆hi]
Im(ki)

}

IN=





jωγε∗N
4|kN |2

sin[2Re(kN )∆hN ]
Re(kN ) − jωγε∗N

4|kN |2
sin[2Im(kN1)∆hN ]

Im(kN ) (PMC)

− jωγε∗N
4|kN |2

sin[2Re(kN1)∆hN ]
Re(kN ) − jωγε∗N

4|kN |2
sin[2Im(kN )∆hN ]

Im(kN ) (PEC)
(A.27)

and the denominators are assumed to be none-zero.

The characteristic impedance Z0 is calculated using the voltage-power definition as

Z0 =
|V |2
P ∗ . (A.28)

With the γ and Z0 founded, the inductance L, capacitance C, conductance G, and resistance

R per unit length in the transmission line model can be extracted from

R=Re (γZ0) (A.29)

L=Im (γZ0) /ω (A.30)

G=Re (γ/Z0) (A.31)

C=Im (γ/Z0) /ω. (A.32)
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APPENDIX B. The Transfer Matrices With Different Boundary

Conditions

In Chapter 3, the transfer matrix method implements the chained matrices to calculate the

Green’s functions for multilayered structures. Up to now, the specific BCs of the lowermost

h0 and uppermost hN layers should be taken into account. Basically, only three conditions are

commonly used: the PEC (shielded), the PMC, and the open space. The open-space condition

is defined as that a medium fills all the half space above or below the interface hN or h1. For

different BCs, the matrices and unknown coefficients of potentials have different formulations.

B.1 Different Boundary Conditions on the Interface h0

This case studies the first layer that is below the signal strip. There exist different formu-

lations for the electric and magnetic potentials.

B.1.1 The Perfect-Electric-Conductor Boundary Condition

When the interface h0 has the PEC BC, the general solutions for the electric and magnetic

potentials are

Ψ̃e,1 = 2A1 sinh [γi(y − h0)] = A1e
γ1y −A1e

−γ1y

Ψ̃m,1 = 2C1 cosh [γi(y − h0)] = C1e
γ1y + C1e

−γ1y
(h0 ≤ y ≤ h1) (B.1)
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where B1 = −A1, D1 = C1, and h0 = 0. Thus the relation between the coefficients of the first

and second layers on the interface y = h1 can be expressed in a matrix form as



A2

B2

C2

D2




=
[
T2

]−1 [
T1

]




1 0 0 0

−e−2γ1∆h1 0 0 0

0 0 1 0

0 0 e−2γ1∆h1 0







A1e
γ1∆h1

0

C1e
γ1∆h1

0




(B.2)

where ∆h1 = h1 − h0. Then the cascaded transfer matrices can be written as



At

Bt

Ct

Dt




=
[
Mt,t−1

]
. . .

[
M3,2

] [
T2

]−1 [
T1

]




1 0 0 0

−e−2γ1∆h1 0 0 0

0 0 1 0

0 0 e−2γ1∆h1 0







A1e
γ1∆h1

0

C1e
γ1∆h1

0




. (B.3)

And the corresponding Ã and C̃ are defined as



Ã

0

C̃

0




=




A1e
γ1∆h1

0

C1e
γ1∆h1

0




. (B.4)

B.1.2 The Perfect-Magnetic-Conductor Boundary Condition

The general solutions for the potential are

Ψ̃e,1 = 2A1 cosh [γi(y − h0)] = A1e
γ1y + A1e

−γ1y

Ψ̃m,1 = 2C1 sinh [γi(y − h0)] = C1e
γ1y − C1e

−γ1y
(0 ≤ y ≤ h1) (B.5)

where B1 = A1, D1 = −C1. Thus the relation between the coefficients of the first and second

layers on the interface y = h1 can be expressed in a matrix form as



A2

B2

C2

D2




=
[
T2

]−1 [
T1

]




1 0 0 0

e−2γ1∆h1 0 0 0

0 0 1 0

0 0 −e−2γ1∆h1 0







A1e
γ1∆h1

0

C1e
γ1∆h1

0




. (B.6)

The relation of (B.4) still holds for the PMC BC.
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B.1.3 The Open-Space Boundary Condition

When the interface h0 becomes open, the general solutions for the electrical and magnetic

potentials become

Ψ̃e,1 = A1e
γ1(y−h1)

Ψ̃m,1 = C1e
γ1(y−h1)

(y ≤ h1) (B.7)

where B1 = D1 = 0. The transfer matrices has the form



At

Bt

Ct

Dt




=
[
Mt,t−1

] [
Mt−1,t−2

]
. . .

[
M3,2

] [
T2

]−1 [
T1

]




1

0

1

0







A1

0

C1

0




(B.8)

The Ã and C̃ become



Ã

0

C̃

0




=




A1

0

C1

0




. (B.9)

B.2 Different Boundary Conditions on the Interface hN

The last layer is above the signal strip. Similarly, the BCs are discussed as follows.

B.2.1 The Perfect-Electric-Conductor Boundary Condition

When the interface hN has the PEC BC, the general solutions for the potentials are

Ψ̃e,N = −2BN sinh [γN (y − hN )] = −BNeγN (y−hN ) + BNe−γN (y−hN )

Ψ̃m,N = 2DN cosh [γN (y − hN )] = DNeγN (y−hN ) + DNe−γN (y−hN )
(B.10)

or

Ψ̃e,N = −BNe−γN (hN−y) + BNeγN (hN−y)

Ψ̃m,N = DNe−γN (hN−y) + DNeγN (hN−y)
(B.11)
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where AN = −BN , CN = DN , and hN−1 ≤ y < hN . The relation between the coefficients of

the Nth and (N − 1)th layers can be expressed in a matrix form on the interface hN−1 as




AN−1

BN−1

CN−1

DN−1




=
[
TN−1

]−1 [
TN

]




0 −e−2γN∆hN 0 0

0 1 0 0

0 0 0 e−2γN∆hN

0 0 0 1







0

BNeγN∆hN

0

DNeγN∆hN




. (B.12)

Thus the cascaded transfer matrices can be written as



At+1

Bt+1

Ct+1

Dt+1




=
[
M ′

t+1,t+2

] [
M ′

t+2,t+3

]
. . .

[
M ′

N−2,N−1

] [
TN−1

]−1 [
TN

]




0 −e−2γN∆hN 0 0

0 1 0 0

0 0 0 e−2γN∆hN

0 0 0 1







0

BNeγN∆hN

0

DNeγN∆hN




(B.13)

where ∆hN = hN − hN−1. And B̃ and D̃ are defined as




0

B̃

0

D̃




=




0

BNeγN∆hN

0

DNeγN∆hN

0




. (B.14)

B.2.2 The Perfect-Magnetic-Conductor Boundary Condition

When the interface hN has the PMC BC, the general solutions for the potentials are

Ψ̃e,N = 2BN cos [γN (y − hN )] = BNe−γN (hN−y) + BNeγN (hN−y)

Ψ̃m,N = −2DN sinh [γN (y − hN )] = −DNe−γN (hN−y) + DNeγN (hN−y)
(B.15)
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where AN = BN , CN = −DN , and hN−1 ≤ y < hN . The relation same as (B.12) is expressed

in matrix form on the interface y = hN−1 as




AN−1

BN−1

CN−1

DN−1




=
[
TN−1

]−1 [
TN

]




0 e−2γN∆hN 0 0

0 1 0 0

0 0 0 −e−2γN∆hN

0 0 0 1







0

BNeγN∆hN

0

DNeγN∆hN




(B.16)

The relation (B.14) is also correct for the PMC BC.

B.2.3 The Open-Space Boundary Condition

When the interface hN becomes open, the general solutions for the electrical and magnetic

potentials become

Ψ̃e,N = BNe−γN (y−hN−1)

Ψ̃m,N = DNe−γN (y−hN−1)
(hN−1 ≤ y) (B.17)

where AN = CN = 0, and . The transfer matrices become




At+1

Bt+1

Ct+1

Dt+1




=
[
M ′

t+1,t+2

]
. . .

[
M ′

N−2,N−1

] [
TN−1

]−1 [
TN

]




0

1

0

1







0

BN

0

DN




. (B.18)

Now the B̃ and D̃ are defined as




0

B̃

0

D̃




=




0

BN

0

DN

0




. (B.19)

To this point, all the coefficients Ã, B̃, C̃, and D̃ are explicitly defined based on different BCs.
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APPENDIX C. List of Abbreviations

BCs boundary conditions
CAD computer-aided design
dc direct current
EM electromagnetic
EMI electromagnetic interference
FD finite difference
FDTD finite difference in time domain
FEM finite element method
FFT fast Fourier transform
IBC impedance boundary condition
ICs integrated circuits
IEM inverted embedded microstrip
ITRS International Technology Roadmap for Semiconductors
LSE longitudinal-section electric
LSM longitudinal-section magnetic
MIMI metal-insulator-metal-insulator
MIMS metal-insulator-metal-semiconductor
MIS metal-insulator-semiconductor
MoL method of lines
MoM method of moments
PEC perfect electric conductor
PMC perfect magnetic conductor
R-card resistive sheet
RFICs radio-frequency integrated circuits
RLCG resistance, inductance, capacitance, and conductance
SDA spectral domain approach
SDIA spectral-domain immitance approach
SWF slow-wave factor
TE transverse electric
TEM transverse electromagnetic
TFMSL thin-film microstrip line
TLM transmission line matrix
TM transverse magnetic
VLSI very-large-scale integration
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